1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
// Copyright 2014-2018 Optimal Computing (NZ) Ltd.
// Licensed under the MIT license.  See LICENSE for details.

use std::{f32,f64};
use super::Ulps;

/// ApproxEq is a trait for approximate equality comparisons. The associated type Flt is a
/// floating point type which implements Ulps, and is required so that this trait can be
/// implemented for compound types (e.g. vectors),/ not just for the floats themselves.
pub trait ApproxEq {
    type Flt: Ulps;

    /// This method tests for `self` and `other` values to be approximately equal
    /// using two methods: epsilon and ulps.  If the values differ by less than the
    /// given epsilon, they will be considered equal. If the values differ by more
    /// than epsilon, but by less than the given ulps, they will also be considered
    /// equal. Otherwise they are unequal.
    ///
    /// Note that very small values of differing signs may pass as equal under the
    /// epsilon method. The epsilon method is very useful for these cases and for
    /// handling zeroes. The ulps method helps for larger numbers where the spacing
    /// between floating point representations gets larger.
    fn approx_eq(&self, other: &Self, epsilon: Self::Flt, ulps: <Self::Flt as Ulps>::U)
                 -> bool;

    /// This method tests for `self` and `other` values to be not approximately equal
    /// using two methods: epsilon and ulps.  If the values differ by less than the
    /// given epsilon, they will be considered equal. If the values differ by more
    /// than epsilon, but by less than the given ulps, they will also be considered
    /// equal. Otherwise they are unequal.
    ///
    /// Note that very small values of differing signs may pass as equal under the
    /// epsilon method. The epsilon method is very useful for these cases and for
    /// handling zeroes. The ulps method helps for larger numbers where the spacing
    /// between floating point representations gets larger.
    fn approx_ne(&self, other: &Self, epsilon: Self::Flt, ulps: <Self::Flt as Ulps>::U)
                 -> bool
    {
        !self.approx_eq(other, epsilon, ulps)
    }
}

impl ApproxEq for f32 {
    type Flt = f32;

    fn approx_eq(&self, other: &f32, epsilon: f32, ulps: i32) -> bool {
        // Check for exact equality first. This is often true, and so we get the
        // performance benefit of only doing one compare in most cases.
        *self==*other ||

        // Perform epsilon comparison next
            ((*self - *other).abs() <= epsilon) ||

        {
            // Perform ulps comparion last
            let diff: i32 = self.ulps(other);
            -ulps <= diff && diff <= ulps
        }
    }
}

#[test]
fn f32_approx_eq_test1() {
    let f: f32 = 0.0_f32;
    let g: f32 = -0.0000000000000005551115123125783_f32;
    assert!(f != g); // Should not be directly equal
    assert!(f.approx_eq(&g, f32::EPSILON, 0) == true);
}
#[test]
fn f32_approx_eq_test2() {
    let f: f32 = 0.0_f32;
    let g: f32 = -0.0_f32;
    assert!(f.approx_eq(&g, f32::EPSILON, 0) == true);
}
#[test]
fn f32_approx_eq_test3() {
    let f: f32 = 0.0_f32;
    let g: f32 = 0.00000000000000001_f32;
    assert!(f.approx_eq(&g, f32::EPSILON, 0) == true);
}
#[test]
fn f32_approx_eq_test4() {
    let f: f32 = 0.00001_f32;
    let g: f32 = 0.00000000000000001_f32;
    assert!(f.approx_eq(&g, f32::EPSILON, 0) == false);
}
#[test]
fn f32_approx_eq_test5() {
    let f: f32 = 0.1_f32;
    let mut sum: f32 = 0.0_f32;
    for _ in 0_isize..10_isize { sum += f; }
    let product: f32 = f * 10.0_f32;
    assert!(sum != product); // Should not be directly equal:
    println!("Ulps Difference: {}",sum.ulps(&product));
    assert!(sum.approx_eq(&product, f32::EPSILON, 1) == true); // But should be close
    assert!(sum.approx_eq(&product, 0.0, 0) == false);
}
#[test]
fn f32_approx_eq_test6() {
    let x: f32 = 1000000_f32;
    let y: f32 = 1000000.1_f32;
    assert!(x != y); // Should not be directly equal
    assert!(x.approx_eq(&y, 0.0, 2) == true); // 2 ulps does it
    assert!(x.approx_eq(&y, 1000.0 * f32::EPSILON, 0) == false); // epsilon method no good here
}

impl ApproxEq for f64 {
    type Flt = f64;

    fn approx_eq(&self, other: &f64, epsilon: f64, ulps: i64) -> bool {
        // Check for exact equality first. This is often true, and so we get the
        // performance benefit of only doing one compare in most cases.
        *self==*other ||

        // Perform epsilon comparison next
            ((*self - *other).abs() <= epsilon) ||

        {
            // Perform ulps comparion last
            let diff: i64 = self.ulps(other);
            -ulps <= diff && diff <= ulps
        }
    }
}

#[test]
fn f64_approx_eq_test1() {
    let f: f64 = 0.0_f64;
    let g: f64 = -0.0000000000000005551115123125783_f64;
    assert!(f != g); // Should not be directly equal
    assert!(f.approx_eq(&g, 3.0 * f64::EPSILON, 0) == true); // 3e is enough
    // ulps test wont ever call these equal
}
#[test]
fn f64_approx_eq_test2() {
    let f: f64 = 0.0_f64;
    let g: f64 = -0.0_f64;
    assert!(f.approx_eq(&g, f64::EPSILON, 0) == true);
}
#[test]
fn f64_approx_eq_test3() {
    let f: f64 = 0.0_f64;
    let g: f64 = 1e-17_f64;
    assert!(f.approx_eq(&g, f64::EPSILON, 0) == true);
}
#[test]
fn f64_approx_eq_test4() {
    let f: f64 = 0.00001_f64;
    let g: f64 = 0.00000000000000001_f64;
    assert!(f.approx_eq(&g, f64::EPSILON, 0) == false);
}
#[test]
fn f64_approx_eq_test5() {
    let f: f64 = 0.1_f64;
    let mut sum: f64 = 0.0_f64;
    for _ in 0_isize..10_isize { sum += f; }
    let product: f64 = f * 10.0_f64;
    assert!(sum != product); // Should not be directly equal:
    println!("Ulps Difference: {}",sum.ulps(&product));
    assert!(sum.approx_eq(&product, f64::EPSILON, 0) == true);
    assert!(sum.approx_eq(&product, 0.0, 1) == true);
}
#[test]
fn f64_approx_eq_test6() {
    let x: f64 = 1000000_f64;
    let y: f64 = 1000000.0000000003_f64;
    assert!(x != y); // Should not be directly equal
    println!("Ulps Difference: {}",x.ulps(&y));
    assert!(x.approx_eq(&y, 0.0, 3) == true);
}