float_cmp/
eq.rs

1// Copyright 2014-2020 Optimal Computing (NZ) Ltd.
2// Licensed under the MIT license.  See LICENSE for details.
3
4use super::Ulps;
5use core::{f32, f64};
6#[cfg(feature = "num-traits")]
7#[allow(unused_imports)]
8use num_traits::float::FloatCore;
9
10/// A margin specifying a maximum distance two floating point values can be while
11/// still being considered equal enough.
12pub trait FloatMargin: Copy + Default {
13    /// A floating-point type used for epsilon values
14    type F;
15
16    /// An integer type used for ulps values
17    type I;
18
19    /// Zero margin
20    fn zero() -> Self;
21
22    /// Set the epsilon value for this margin
23    fn epsilon(self, epsilon: Self::F) -> Self;
24
25    /// Set the ulps value for this margin
26    fn ulps(self, ulps: Self::I) -> Self;
27}
28
29/// A trait for approximate equality comparisons.
30pub trait ApproxEq: Sized {
31    /// This type type defines a margin within which two values are to be
32    /// considered approximately equal. It must implement `Default` so that
33    /// `approx_eq()` can be called on unknown types.
34    type Margin: FloatMargin;
35
36    /// This method tests that the `self` and `other` values are equal within `margin`
37    /// of each other.
38    fn approx_eq<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool;
39
40    /// This method tests that the `self` and `other` values are not within `margin`
41    /// of each other.
42    fn approx_ne<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool {
43        !self.approx_eq(other, margin)
44    }
45}
46
47/// This type defines a margin within two `f32` values might be considered equal,
48/// and is intended as the associated type for the `ApproxEq` trait.
49///
50/// Two tests are used to determine approximate equality.
51///
52/// The first test considers two values approximately equal if they differ by <=
53/// `epsilon`. This will only succeed for very small numbers. Note that it may
54/// succeed even if the parameters are of differing signs, straddling zero.
55///
56/// The second test considers how many ULPs (units of least precision, units in
57/// the last place, which is the integer number of floating-point representations
58/// that the parameters are separated by) different the parameters are and considers
59/// them approximately equal if this is <= `ulps`. For large floating-point numbers,
60/// an ULP can be a rather large gap, but this kind of comparison is necessary
61/// because floating-point operations must round to the nearest representable value
62/// and so larger floating-point values accumulate larger errors.
63#[repr(C)]
64#[derive(Debug, Clone, Copy)]
65pub struct F32Margin {
66    pub epsilon: f32,
67    pub ulps: i32,
68}
69impl Default for F32Margin {
70    #[inline]
71    fn default() -> F32Margin {
72        F32Margin {
73            epsilon: f32::EPSILON,
74            ulps: 4,
75        }
76    }
77}
78impl FloatMargin for F32Margin {
79    type F = f32;
80    type I = i32;
81
82    #[inline]
83    fn zero() -> F32Margin {
84        F32Margin {
85            epsilon: 0.0,
86            ulps: 0,
87        }
88    }
89    fn epsilon(self, epsilon: f32) -> Self {
90        F32Margin { epsilon, ..self }
91    }
92    fn ulps(self, ulps: i32) -> Self {
93        F32Margin { ulps, ..self }
94    }
95}
96impl From<(f32, i32)> for F32Margin {
97    fn from(m: (f32, i32)) -> F32Margin {
98        F32Margin {
99            epsilon: m.0,
100            ulps: m.1,
101        }
102    }
103}
104
105// no-std compatible abs function
106#[inline(always)]
107fn f32abs(x: f32) -> f32 {
108    f32::from_bits(x.to_bits() & !(1 << 31))
109}
110
111impl ApproxEq for f32 {
112    type Margin = F32Margin;
113
114    fn approx_eq<M: Into<Self::Margin>>(self, other: f32, margin: M) -> bool {
115        let margin = margin.into();
116
117        // Check for exact equality first. This is often true, and so we get the
118        // performance benefit of only doing one compare in most cases.
119        self == other || {
120            // Perform epsilon comparison next
121            let eps = f32abs(self - other);
122            (eps <= margin.epsilon) || {
123                // Perform ulps comparison last
124                let diff: i32 = self.ulps(&other);
125                saturating_abs_i32!(diff) <= margin.ulps
126            }
127        }
128    }
129}
130
131#[test]
132fn f32_approx_eq_test1() {
133    let f: f32 = 0.0_f32;
134    let g: f32 = -0.0000000000000005551115123125783_f32;
135    assert!(f != g); // Should not be directly equal
136    assert!(f.approx_eq(g, (f32::EPSILON, 0)) == true);
137}
138#[test]
139fn f32_approx_eq_test2() {
140    let f: f32 = 0.0_f32;
141    let g: f32 = -0.0_f32;
142    assert!(f.approx_eq(g, (f32::EPSILON, 0)) == true);
143}
144#[test]
145fn f32_approx_eq_test3() {
146    let f: f32 = 0.0_f32;
147    let g: f32 = 0.00000000000000001_f32;
148    assert!(f.approx_eq(g, (f32::EPSILON, 0)) == true);
149}
150#[test]
151fn f32_approx_eq_test4() {
152    let f: f32 = 0.00001_f32;
153    let g: f32 = 0.00000000000000001_f32;
154    assert!(f.approx_eq(g, (f32::EPSILON, 0)) == false);
155}
156#[test]
157fn f32_approx_eq_test5() {
158    let f: f32 = 0.1_f32;
159    let mut sum: f32 = 0.0_f32;
160    for _ in 0_isize..10_isize {
161        sum += f;
162    }
163    let product: f32 = f * 10.0_f32;
164    assert!(sum != product); // Should not be directly equal:
165    assert!(sum.approx_eq(product, (f32::EPSILON, 1)) == true);
166    assert!(sum.approx_eq(product, F32Margin::zero()) == false);
167}
168#[test]
169fn f32_approx_eq_test6() {
170    let x: f32 = 1000000_f32;
171    let y: f32 = 1000000.1_f32;
172    assert!(x != y); // Should not be directly equal
173    assert!(x.approx_eq(y, (0.0, 2)) == true); // 2 ulps does it
174                                               // epsilon method no good here:
175    assert!(x.approx_eq(y, (1000.0 * f32::EPSILON, 0)) == false);
176}
177
178/// This type defines a margin within two `f64` values might be considered equal,
179/// and is intended as the associated type for the `ApproxEq` trait.
180///
181/// Two tests are used to determine approximate equality.
182///
183/// The first test considers two values approximately equal if they differ by <=
184/// `epsilon`. This will only succeed for very small numbers. Note that it may
185/// succeed even if the parameters are of differing signs, straddling zero.
186///
187/// The second test considers how many ULPs (units of least precision, units in
188/// the last place, which is the integer number of floating-point representations
189/// that the parameters are separated by) different the parameters are and considers
190/// them approximately equal if this is <= `ulps`. For large floating-point numbers,
191/// an ULP can be a rather large gap, but this kind of comparison is necessary
192/// because floating-point operations must round to the nearest representable value
193/// and so larger floating-point values accumulate larger errors.
194#[derive(Debug, Clone, Copy)]
195pub struct F64Margin {
196    pub epsilon: f64,
197    pub ulps: i64,
198}
199impl Default for F64Margin {
200    #[inline]
201    fn default() -> F64Margin {
202        F64Margin {
203            epsilon: f64::EPSILON,
204            ulps: 4,
205        }
206    }
207}
208impl FloatMargin for F64Margin {
209    type F = f64;
210    type I = i64;
211
212    #[inline]
213    fn zero() -> F64Margin {
214        F64Margin {
215            epsilon: 0.0,
216            ulps: 0,
217        }
218    }
219    fn epsilon(self, epsilon: f64) -> Self {
220        F64Margin { epsilon, ..self }
221    }
222    fn ulps(self, ulps: i64) -> Self {
223        F64Margin { ulps, ..self }
224    }
225}
226impl From<(f64, i64)> for F64Margin {
227    fn from(m: (f64, i64)) -> F64Margin {
228        F64Margin {
229            epsilon: m.0,
230            ulps: m.1,
231        }
232    }
233}
234
235// no-std compatible abs function
236#[inline(always)]
237fn f64abs(x: f64) -> f64 {
238    f64::from_bits(x.to_bits() & !(1 << 63))
239}
240
241impl ApproxEq for f64 {
242    type Margin = F64Margin;
243
244    fn approx_eq<M: Into<Self::Margin>>(self, other: f64, margin: M) -> bool {
245        let margin = margin.into();
246
247        // Check for exact equality first. This is often true, and so we get the
248        // performance benefit of only doing one compare in most cases.
249        self == other || {
250            // Perform epsilon comparison next
251            let eps = f64abs(self - other);
252            (eps <= margin.epsilon) || {
253                // Perform ulps comparison last
254                let diff: i64 = self.ulps(&other);
255                saturating_abs_i64!(diff) <= margin.ulps
256            }
257        }
258    }
259}
260
261#[test]
262fn f64_approx_eq_test1() {
263    let f: f64 = 0.0_f64;
264    let g: f64 = -0.0000000000000005551115123125783_f64;
265    assert!(f != g); // Should not be precisely equal.
266    assert!(f.approx_eq(g, (3.0 * f64::EPSILON, 0)) == true); // 3e is enough.
267                                                              // ULPs test won't ever call these equal.
268}
269#[test]
270fn f64_approx_eq_test2() {
271    let f: f64 = 0.0_f64;
272    let g: f64 = -0.0_f64;
273    assert!(f.approx_eq(g, (f64::EPSILON, 0)) == true);
274}
275#[test]
276fn f64_approx_eq_test3() {
277    let f: f64 = 0.0_f64;
278    let g: f64 = 1e-17_f64;
279    assert!(f.approx_eq(g, (f64::EPSILON, 0)) == true);
280}
281#[test]
282fn f64_approx_eq_test4() {
283    let f: f64 = 0.00001_f64;
284    let g: f64 = 0.00000000000000001_f64;
285    assert!(f.approx_eq(g, (f64::EPSILON, 0)) == false);
286}
287#[test]
288fn f64_approx_eq_test5() {
289    let f: f64 = 0.1_f64;
290    let mut sum: f64 = 0.0_f64;
291    for _ in 0_isize..10_isize {
292        sum += f;
293    }
294    let product: f64 = f * 10.0_f64;
295    assert!(sum != product); // Should not be precisely equally.
296    assert!(sum.approx_eq(product, (f64::EPSILON, 0)) == true);
297    assert!(sum.approx_eq(product, (0.0, 1)) == true);
298}
299#[test]
300fn f64_approx_eq_test6() {
301    let x: f64 = 1000000_f64;
302    let y: f64 = 1000000.0000000003_f64;
303    assert!(x != y); // Should not be precisely equal.
304    assert!(x.approx_eq(y, (0.0, 3)) == true);
305}
306#[test]
307fn f64_code_triggering_issue_20() {
308    assert_eq!((-25.0f64).approx_eq(25.0, (0.00390625, 1)), false);
309}
310
311impl<T> ApproxEq for &[T]
312where
313    T: Copy + ApproxEq,
314{
315    type Margin = <T as ApproxEq>::Margin;
316
317    fn approx_eq<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool {
318        let margin = margin.into();
319        if self.len() != other.len() {
320            return false;
321        }
322        self.iter()
323            .zip(other.iter())
324            .all(|(a, b)| a.approx_eq(*b, margin))
325    }
326}
327
328#[test]
329fn test_slices() {
330    assert!([1.33, 2.4, 2.5].approx_eq(&[1.33, 2.4, 2.5], (0.0, 0_i64)));
331    assert!(![1.33, 2.4, 2.6].approx_eq(&[1.33, 2.4, 2.5], (0.0, 0_i64)));
332    assert!(![1.33, 2.4].approx_eq(&[1.33, 2.4, 2.5], (0.0, 0_i64)));
333    assert!(![1.33, 2.4, 2.5].approx_eq(&[1.33, 2.4], (0.0, 0_i64)));
334}
335
336impl<T> ApproxEq for Option<T>
337where
338    T: Copy + ApproxEq,
339{
340    type Margin = <T as ApproxEq>::Margin;
341
342    fn approx_eq<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool {
343        let margin = margin.into();
344        match (self, other) {
345            (None, None) => true,
346            (Some(slf), Some(oth)) => slf.approx_eq(oth, margin),
347            _ => false,
348        }
349    }
350}
351
352#[test]
353fn test_option() {
354    let x: Option<f32> = None;
355    assert!(x.approx_eq(None, (0.0, 0_i32)));
356    assert!(Some(5.3_f32).approx_eq(Some(5.3), (0.0, 0_i32)));
357    assert!(Some(5.3_f32).approx_ne(Some(5.7), (0.0, 0_i32)));
358    assert!(Some(5.3_f32).approx_ne(None, (0.0, 0_i32)));
359    assert!(x.approx_ne(Some(5.3), (0.0, 0_i32)));
360}