float_cmp/
ratio.rs

1// Copyright 2014-2020 Optimal Computing (NZ) Ltd.
2// Licensed under the MIT license.  See LICENSE for details.
3
4use core::cmp::PartialOrd;
5use core::ops::{Div, Neg, Sub};
6use num_traits::Zero;
7
8/// ApproxEqRatio is a trait for approximate equality comparisons bounding the ratio
9/// of the difference to the larger.
10pub trait ApproxEqRatio:
11    Div<Output = Self> + Sub<Output = Self> + Neg<Output = Self> + PartialOrd + Zero + Sized + Copy
12{
13    /// This method tests if `self` and `other` are nearly equal by bounding the
14    /// difference between them to some number much less than the larger of the two.
15    /// This bound is set as the ratio of the difference to the larger.
16    fn approx_eq_ratio(&self, other: &Self, ratio: Self) -> bool {
17        // Not equal if signs are not equal
18        if *self < Self::zero() && *other > Self::zero() {
19            return false;
20        }
21        if *self > Self::zero() && *other < Self::zero() {
22            return false;
23        }
24
25        // Handle all zero cases
26        match (*self == Self::zero(), *other == Self::zero()) {
27            (true, true) => return true,
28            (true, false) => return false,
29            (false, true) => return false,
30            _ => {}
31        }
32
33        // abs
34        let (s, o) = if *self < Self::zero() {
35            (-*self, -*other)
36        } else {
37            (*self, *other)
38        };
39
40        let (smaller, larger) = if s < o { (s, o) } else { (o, s) };
41        let difference: Self = larger.sub(smaller);
42        let actual_ratio: Self = difference.div(larger);
43        actual_ratio < ratio
44    }
45
46    /// This method tests if `self` and `other` are not nearly equal by bounding the
47    /// difference between them to some number much less than the larger of the two.
48    /// This bound is set as the ratio of the difference to the larger.
49    #[inline]
50    fn approx_ne_ratio(&self, other: &Self, ratio: Self) -> bool {
51        !self.approx_eq_ratio(other, ratio)
52    }
53}
54
55impl ApproxEqRatio for f32 {}
56
57#[test]
58fn f32_approx_eq_ratio_test1() {
59    let x: f32 = 0.00004_f32;
60    let y: f32 = 0.00004001_f32;
61    assert!(x.approx_eq_ratio(&y, 0.00025));
62    assert!(y.approx_eq_ratio(&x, 0.00025));
63    assert!(x.approx_ne_ratio(&y, 0.00024));
64    assert!(y.approx_ne_ratio(&x, 0.00024));
65}
66
67#[test]
68fn f32_approx_eq_ratio_test2() {
69    let x: f32 = 0.00000000001_f32;
70    let y: f32 = 0.00000000005_f32;
71    assert!(x.approx_eq_ratio(&y, 0.81));
72    assert!(y.approx_ne_ratio(&x, 0.79));
73}
74
75#[test]
76fn f32_approx_eq_ratio_test_zero_eq_zero_returns_true() {
77    let x: f32 = 0.0_f32;
78    assert!(x.approx_eq_ratio(&x, 0.1) == true);
79}
80
81#[test]
82fn f32_approx_eq_ratio_test_zero_ne_zero_returns_false() {
83    let x: f32 = 0.0_f32;
84    assert!(x.approx_ne_ratio(&x, 0.1) == false);
85}
86
87#[test]
88fn f32_approx_eq_ratio_test_against_a_zero_is_false() {
89    let x: f32 = 0.0_f32;
90    let y: f32 = 0.1_f32;
91    assert!(x.approx_eq_ratio(&y, 0.1) == false);
92    assert!(y.approx_eq_ratio(&x, 0.1) == false);
93}
94
95#[test]
96fn f32_approx_eq_ratio_test_negative_numbers() {
97    let x: f32 = -3.0_f32;
98    let y: f32 = -4.0_f32;
99    // -3 and -4 should not be equal at a ratio of 0.1
100    assert!(x.approx_eq_ratio(&y, 0.1) == false);
101}
102
103impl ApproxEqRatio for f64 {}
104
105#[test]
106fn f64_approx_eq_ratio_test1() {
107    let x: f64 = 0.000000004_f64;
108    let y: f64 = 0.000000004001_f64;
109    assert!(x.approx_eq_ratio(&y, 0.00025));
110    assert!(y.approx_eq_ratio(&x, 0.00025));
111    assert!(x.approx_ne_ratio(&y, 0.00024));
112    assert!(y.approx_ne_ratio(&x, 0.00024));
113}
114
115#[test]
116fn f64_approx_eq_ratio_test2() {
117    let x: f64 = 0.0000000000000001_f64;
118    let y: f64 = 0.0000000000000005_f64;
119    assert!(x.approx_eq_ratio(&y, 0.81));
120    assert!(y.approx_ne_ratio(&x, 0.79));
121}
122
123#[test]
124fn f64_approx_eq_ratio_test_zero_eq_zero_returns_true() {
125    let x: f64 = 0.0_f64;
126    assert!(x.approx_eq_ratio(&x, 0.1) == true);
127}
128
129#[test]
130fn f64_approx_eq_ratio_test_zero_ne_zero_returns_false() {
131    let x: f64 = 0.0_f64;
132    assert!(x.approx_ne_ratio(&x, 0.1) == false);
133}
134
135#[test]
136fn f64_approx_eq_ratio_test_negative_numbers() {
137    let x: f64 = -3.0_f64;
138    let y: f64 = -4.0_f64;
139    // -3 and -4 should not be equal at a ratio of 0.1
140    assert!(x.approx_eq_ratio(&y, 0.1) == false);
141}