1use core::cmp::PartialOrd;
5use core::ops::{Div, Neg, Sub};
6use num_traits::Zero;
7
8pub trait ApproxEqRatio:
11 Div<Output = Self> + Sub<Output = Self> + Neg<Output = Self> + PartialOrd + Zero + Sized + Copy
12{
13 fn approx_eq_ratio(&self, other: &Self, ratio: Self) -> bool {
17 if *self < Self::zero() && *other > Self::zero() {
19 return false;
20 }
21 if *self > Self::zero() && *other < Self::zero() {
22 return false;
23 }
24
25 match (*self == Self::zero(), *other == Self::zero()) {
27 (true, true) => return true,
28 (true, false) => return false,
29 (false, true) => return false,
30 _ => {}
31 }
32
33 let (s, o) = if *self < Self::zero() {
35 (-*self, -*other)
36 } else {
37 (*self, *other)
38 };
39
40 let (smaller, larger) = if s < o { (s, o) } else { (o, s) };
41 let difference: Self = larger.sub(smaller);
42 let actual_ratio: Self = difference.div(larger);
43 actual_ratio < ratio
44 }
45
46 #[inline]
50 fn approx_ne_ratio(&self, other: &Self, ratio: Self) -> bool {
51 !self.approx_eq_ratio(other, ratio)
52 }
53}
54
55impl ApproxEqRatio for f32 {}
56
57#[test]
58fn f32_approx_eq_ratio_test1() {
59 let x: f32 = 0.00004_f32;
60 let y: f32 = 0.00004001_f32;
61 assert!(x.approx_eq_ratio(&y, 0.00025));
62 assert!(y.approx_eq_ratio(&x, 0.00025));
63 assert!(x.approx_ne_ratio(&y, 0.00024));
64 assert!(y.approx_ne_ratio(&x, 0.00024));
65}
66
67#[test]
68fn f32_approx_eq_ratio_test2() {
69 let x: f32 = 0.00000000001_f32;
70 let y: f32 = 0.00000000005_f32;
71 assert!(x.approx_eq_ratio(&y, 0.81));
72 assert!(y.approx_ne_ratio(&x, 0.79));
73}
74
75#[test]
76fn f32_approx_eq_ratio_test_zero_eq_zero_returns_true() {
77 let x: f32 = 0.0_f32;
78 assert!(x.approx_eq_ratio(&x, 0.1) == true);
79}
80
81#[test]
82fn f32_approx_eq_ratio_test_zero_ne_zero_returns_false() {
83 let x: f32 = 0.0_f32;
84 assert!(x.approx_ne_ratio(&x, 0.1) == false);
85}
86
87#[test]
88fn f32_approx_eq_ratio_test_against_a_zero_is_false() {
89 let x: f32 = 0.0_f32;
90 let y: f32 = 0.1_f32;
91 assert!(x.approx_eq_ratio(&y, 0.1) == false);
92 assert!(y.approx_eq_ratio(&x, 0.1) == false);
93}
94
95#[test]
96fn f32_approx_eq_ratio_test_negative_numbers() {
97 let x: f32 = -3.0_f32;
98 let y: f32 = -4.0_f32;
99 assert!(x.approx_eq_ratio(&y, 0.1) == false);
101}
102
103impl ApproxEqRatio for f64 {}
104
105#[test]
106fn f64_approx_eq_ratio_test1() {
107 let x: f64 = 0.000000004_f64;
108 let y: f64 = 0.000000004001_f64;
109 assert!(x.approx_eq_ratio(&y, 0.00025));
110 assert!(y.approx_eq_ratio(&x, 0.00025));
111 assert!(x.approx_ne_ratio(&y, 0.00024));
112 assert!(y.approx_ne_ratio(&x, 0.00024));
113}
114
115#[test]
116fn f64_approx_eq_ratio_test2() {
117 let x: f64 = 0.0000000000000001_f64;
118 let y: f64 = 0.0000000000000005_f64;
119 assert!(x.approx_eq_ratio(&y, 0.81));
120 assert!(y.approx_ne_ratio(&x, 0.79));
121}
122
123#[test]
124fn f64_approx_eq_ratio_test_zero_eq_zero_returns_true() {
125 let x: f64 = 0.0_f64;
126 assert!(x.approx_eq_ratio(&x, 0.1) == true);
127}
128
129#[test]
130fn f64_approx_eq_ratio_test_zero_ne_zero_returns_false() {
131 let x: f64 = 0.0_f64;
132 assert!(x.approx_ne_ratio(&x, 0.1) == false);
133}
134
135#[test]
136fn f64_approx_eq_ratio_test_negative_numbers() {
137 let x: f64 = -3.0_f64;
138 let y: f64 = -4.0_f64;
139 assert!(x.approx_eq_ratio(&y, 0.1) == false);
141}