float_cmp/
ulps_eq.rs

1// Copyright 2014-2020 Optimal Computing (NZ) Ltd.
2// Licensed under the MIT license.  See LICENSE for details.
3
4use super::Ulps;
5#[cfg(feature = "num-traits")]
6#[allow(unused_imports)]
7use num_traits::float::FloatCore;
8
9/// ApproxEqUlps is a trait for approximate equality comparisons.
10/// The associated type Flt is a floating point type which implements Ulps, and is
11/// required so that this trait can be implemented for compound types (e.g. vectors),
12/// not just for the floats themselves.
13pub trait ApproxEqUlps {
14    type Flt: Ulps;
15
16    /// This method tests for `self` and `other` values to be approximately equal
17    /// within ULPs (Units of Least Precision) floating point representations.
18    /// Differing signs are always unequal with this method, and zeroes are only
19    /// equal to zeroes. Use approx_eq() from the ApproxEq trait if that is more
20    /// appropriate.
21    fn approx_eq_ulps(&self, other: &Self, ulps: <Self::Flt as Ulps>::U) -> bool;
22
23    /// This method tests for `self` and `other` values to be not approximately
24    /// equal within ULPs (Units of Least Precision) floating point representations.
25    /// Differing signs are always unequal with this method, and zeroes are only
26    /// equal to zeroes. Use approx_eq() from the ApproxEq trait if that is more
27    /// appropriate.
28    #[inline]
29    fn approx_ne_ulps(&self, other: &Self, ulps: <Self::Flt as Ulps>::U) -> bool {
30        !self.approx_eq_ulps(other, ulps)
31    }
32}
33
34impl ApproxEqUlps for f32 {
35    type Flt = f32;
36
37    fn approx_eq_ulps(&self, other: &f32, ulps: i32) -> bool {
38        // -0 and +0 are drastically far in ulps terms, so
39        // we need a special case for that.
40        if *self == *other {
41            return true;
42        }
43
44        // Handle differing signs as a special case, even if
45        // they are very close, most people consider them
46        // unequal.
47        if self.is_sign_positive() != other.is_sign_positive() {
48            return false;
49        }
50
51        let diff: i32 = self.ulps(other);
52        diff >= -ulps && diff <= ulps
53    }
54}
55
56#[test]
57fn f32_approx_eq_ulps_test1() {
58    let f: f32 = 0.1_f32;
59    let mut sum: f32 = 0.0_f32;
60    for _ in 0_isize..10_isize {
61        sum += f;
62    }
63    let product: f32 = f * 10.0_f32;
64    assert!(sum != product); // Should not be directly equal:
65    assert!(sum.approx_eq_ulps(&product, 1) == true); // But should be close
66    assert!(sum.approx_eq_ulps(&product, 0) == false);
67}
68#[test]
69fn f32_approx_eq_ulps_test2() {
70    let x: f32 = 1000000_f32;
71    let y: f32 = 1000000.1_f32;
72    assert!(x != y); // Should not be directly equal
73    assert!(x.approx_eq_ulps(&y, 2) == true);
74    assert!(x.approx_eq_ulps(&y, 1) == false);
75}
76#[test]
77fn f32_approx_eq_ulps_test_zeroes() {
78    let x: f32 = 0.0_f32;
79    let y: f32 = -0.0_f32;
80    assert!(x.approx_eq_ulps(&y, 0) == true);
81}
82
83impl ApproxEqUlps for f64 {
84    type Flt = f64;
85
86    fn approx_eq_ulps(&self, other: &f64, ulps: i64) -> bool {
87        // -0 and +0 are drastically far in ulps terms, so
88        // we need a special case for that.
89        if *self == *other {
90            return true;
91        }
92
93        // Handle differing signs as a special case, even if
94        // they are very close, most people consider them
95        // unequal.
96        if self.is_sign_positive() != other.is_sign_positive() {
97            return false;
98        }
99
100        let diff: i64 = self.ulps(other);
101        diff >= -ulps && diff <= ulps
102    }
103}
104
105#[test]
106fn f64_approx_eq_ulps_test1() {
107    let f: f64 = 0.1_f64;
108    let mut sum: f64 = 0.0_f64;
109    for _ in 0_isize..10_isize {
110        sum += f;
111    }
112    let product: f64 = f * 10.0_f64;
113    assert!(sum != product); // Should not be directly equal:
114    assert!(sum.approx_eq_ulps(&product, 1) == true); // But should be close
115    assert!(sum.approx_eq_ulps(&product, 0) == false);
116}
117#[test]
118fn f64_approx_eq_ulps_test2() {
119    let x: f64 = 1000000_f64;
120    let y: f64 = 1000000.0000000003_f64;
121    assert!(x != y); // Should not be directly equal
122    assert!(x.approx_eq_ulps(&y, 3) == true);
123    assert!(x.approx_eq_ulps(&y, 2) == false);
124}
125#[test]
126fn f64_approx_eq_ulps_test_zeroes() {
127    let x: f64 = 0.0_f64;
128    let y: f64 = -0.0_f64;
129    assert!(x.approx_eq_ulps(&y, 0) == true);
130}