1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
//! fixed-point numerical types

use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};

// shared between Fixed, F26Dot6 and F2Dot14
macro_rules! fixed_impl {
    ($name:ident, $bits:literal, $fract_bits:literal, $ty:ty) => {
        #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
        #[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
        #[cfg_attr(feature = "bytemuck", derive(bytemuck::AnyBitPattern, bytemuck::NoUninit))]
        #[repr(transparent)]
        #[doc = concat!(stringify!($bits), "-bit signed fixed point number with ", stringify!($fract_bits), " bits of fraction." )]
        pub struct $name($ty);
        impl $name {
            /// Minimum value.
            pub const MIN: Self = Self(<$ty>::MIN);

            /// Maximum value.
            pub const MAX: Self = Self(<$ty>::MAX);

            /// This type's smallest representable value
            pub const EPSILON: Self = Self(1);

            /// Representation of 0.0.
            pub const ZERO: Self = Self(0);

            /// Representation of 1.0.
            pub const ONE: Self = Self(1 << $fract_bits);

            const INT_MASK: $ty = !0 << $fract_bits;
            const ROUND: $ty = 1 << ($fract_bits - 1);
            const FRACT_BITS: usize = $fract_bits;

            /// Creates a new fixed point value from the underlying bit representation.
            #[inline(always)]
            pub const fn from_bits(bits: $ty) -> Self {
                Self(bits)
            }

            /// Returns the underlying bit representation of the value.
            #[inline(always)]
            pub const fn to_bits(self) -> $ty {
                self.0
            }

            //TODO: is this actually useful?
            /// Returns the nearest integer value.
            #[inline(always)]
            pub const fn round(self) -> Self {
                Self(self.0.wrapping_add(Self::ROUND) & Self::INT_MASK)
            }

            /// Returns the absolute value of the number.
            #[inline(always)]
            pub const fn abs(self) -> Self {
                Self(self.0.abs())
            }

            /// Returns the largest integer less than or equal to the number.
            #[inline(always)]
            pub const fn floor(self) -> Self {
                Self(self.0 & Self::INT_MASK)
            }

            /// Returns the fractional part of the number.
            #[inline(always)]
            pub const fn fract(self) -> Self {
                Self(self.0 - self.floor().0)
            }

            /// Wrapping addition.
            #[inline(always)]
            pub fn wrapping_add(self, other: Self) -> Self {
                Self(self.0.wrapping_add(other.0))
            }

            /// Saturating addition.
            #[inline(always)]
            pub const fn saturating_add(self, other: Self) -> Self {
                Self(self.0.saturating_add(other.0))
            }

            /// Wrapping substitution.
            #[inline(always)]
            pub const fn wrapping_sub(self, other: Self) -> Self {
                Self(self.0.wrapping_sub(other.0))
            }

            /// Saturating substitution.
            #[inline(always)]
            pub const fn saturating_sub(self, other: Self) -> Self {
                Self(self.0.saturating_sub(other.0))
            }

            /// The representation of this number as a big-endian byte array.
            #[inline(always)]
            pub const fn to_be_bytes(self) -> [u8; $bits / 8] {
                self.0.to_be_bytes()
            }
        }

        impl Add for $name {
            type Output = Self;
            #[inline(always)]
            fn add(self, other: Self) -> Self {
                // same overflow semantics as std: panic in debug, wrap in release
                Self(self.0 + other.0)
            }
        }

        impl AddAssign for $name {
            #[inline(always)]
            fn add_assign(&mut self, other: Self) {
                *self = *self + other;
            }
        }

        impl Sub for $name {
            type Output = Self;
            #[inline(always)]
            fn sub(self, other: Self) -> Self {
                Self(self.0 - other.0)
            }
        }

        impl SubAssign for $name {
            #[inline(always)]
            fn sub_assign(&mut self, other: Self) {
                *self = *self - other;
            }
        }
    };
}

/// Implements multiplication and division operators for fixed types.
macro_rules! fixed_mul_div {
    ($ty:ty) => {
        impl $ty {
            /// Multiplies `self` by `a` and divides the product by `b`.
            // This one is specifically not always inlined due to size and
            // frequency of use. We leave it to compiler discretion.
            #[inline]
            pub const fn mul_div(&self, a: Self, b: Self) -> Self {
                let mut sign = 1;
                let mut su = self.0 as u64;
                let mut au = a.0 as u64;
                let mut bu = b.0 as u64;
                if self.0 < 0 {
                    su = 0u64.wrapping_sub(su);
                    sign = -1;
                }
                if a.0 < 0 {
                    au = 0u64.wrapping_sub(au);
                    sign = -sign;
                }
                if b.0 < 0 {
                    bu = 0u64.wrapping_sub(bu);
                    sign = -sign;
                }
                let result = if bu > 0 {
                    su.wrapping_mul(au).wrapping_add(bu >> 1) / bu
                } else {
                    0x7FFFFFFF
                };
                Self(if sign < 0 {
                    -(result as i32)
                } else {
                    result as i32
                })
            }
        }

        impl Mul for $ty {
            type Output = Self;
            #[inline(always)]
            fn mul(self, other: Self) -> Self::Output {
                let ab = self.0 as i64 * other.0 as i64;
                Self(((ab + 0x8000 - i64::from(ab < 0)) >> 16) as i32)
            }
        }

        impl MulAssign for $ty {
            #[inline(always)]
            fn mul_assign(&mut self, rhs: Self) {
                *self = *self * rhs;
            }
        }

        impl Div for $ty {
            type Output = Self;
            #[inline(always)]
            fn div(self, other: Self) -> Self::Output {
                let mut sign = 1;
                let mut a = self.0;
                let mut b = other.0;
                if a < 0 {
                    a = -a;
                    sign = -1;
                }
                if b < 0 {
                    b = -b;
                    sign = -sign;
                }
                let q = if b == 0 {
                    0x7FFFFFFF
                } else {
                    ((((a as u64) << 16) + ((b as u64) >> 1)) / (b as u64)) as u32
                };
                Self(if sign < 0 { -(q as i32) } else { q as i32 })
            }
        }

        impl DivAssign for $ty {
            #[inline(always)]
            fn div_assign(&mut self, rhs: Self) {
                *self = *self / rhs;
            }
        }

        impl Neg for $ty {
            type Output = Self;
            #[inline(always)]
            fn neg(self) -> Self {
                Self(-self.0)
            }
        }
    };
}

/// impl float conversion methods.
///
/// We convert to different float types in order to ensure we can roundtrip
/// without floating point error.
macro_rules! float_conv {
    ($name:ident, $to:ident, $from:ident, $ty:ty) => {
        impl $name {
            #[doc = concat!("Creates a fixed point value from a", stringify!($ty), ".")]
            ///
            /// This operation is lossy; the float will be rounded to the nearest
            /// representable value.
            #[inline(always)]
            pub fn $from(x: $ty) -> Self {
                // When x is positive: 1.0 - 0.5 =  0.5
                // When x is negative: 0.0 - 0.5 = -0.5
                let frac = (x.is_sign_positive() as u8 as $ty) - 0.5;
                Self((x * Self::ONE.0 as $ty + frac) as _)
            }

            #[doc = concat!("Returns the value as an ", stringify!($ty), ".")]
            ///
            /// This operation is lossless: all representable values can be
            /// round-tripped.
            #[inline(always)]
            pub fn $to(self) -> $ty {
                let int = ((self.0 & Self::INT_MASK) >> Self::FRACT_BITS) as $ty;
                let fract = (self.0 & !Self::INT_MASK) as $ty / Self::ONE.0 as $ty;
                int + fract
            }
        }

        //hack: we can losslessly go to float, so use those fmt impls
        impl std::fmt::Display for $name {
            fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
                self.$to().fmt(f)
            }
        }

        impl std::fmt::Debug for $name {
            fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
                self.$to().fmt(f)
            }
        }
    };
}

fixed_impl!(F2Dot14, 16, 14, i16);
fixed_impl!(Fixed, 32, 16, i32);
fixed_impl!(F26Dot6, 32, 6, i32);
fixed_mul_div!(Fixed);
fixed_mul_div!(F26Dot6);
float_conv!(F2Dot14, to_f32, from_f32, f32);
float_conv!(Fixed, to_f64, from_f64, f64);
float_conv!(F26Dot6, to_f64, from_f64, f64);
crate::newtype_scalar!(F2Dot14, [u8; 2]);
crate::newtype_scalar!(Fixed, [u8; 4]);

impl Fixed {
    /// Creates a 16.16 fixed point value from a 32 bit integer.
    #[inline(always)]
    pub const fn from_i32(i: i32) -> Self {
        Self(i << 16)
    }

    /// Converts a 16.16 fixed point value to a 32 bit integer, rounding off
    /// the fractional bits.
    #[inline(always)]
    pub const fn to_i32(self) -> i32 {
        self.0.wrapping_add(0x8000) >> 16
    }

    /// Converts a 16.16 to 26.6 fixed point value.
    #[inline(always)]
    pub const fn to_f26dot6(self) -> F26Dot6 {
        F26Dot6(self.0.wrapping_add(0x200) >> 10)
    }

    /// Converts a 16.16 to 2.14 fixed point value.
    ///
    /// This specific conversion is defined by the spec:
    /// <https://learn.microsoft.com/en-us/typography/opentype/spec/otvaroverview#coordinate-scales-and-normalization>
    ///
    /// "5. Convert the final, normalized 16.16 coordinate value to 2.14 by this method: add 0x00000002,
    /// and sign-extend shift to the right by 2."
    #[inline(always)]
    pub const fn to_f2dot14(self) -> F2Dot14 {
        F2Dot14((self.0.wrapping_add(2) >> 2) as _)
    }

    /// Converts a 16.16 fixed point value to a single precision floating
    /// point value.
    ///
    /// This operation is lossy. Use `to_f64()` for a lossless conversion.
    #[inline(always)]
    pub fn to_f32(self) -> f32 {
        const SCALE_FACTOR: f32 = 1.0 / 65536.0;
        self.0 as f32 * SCALE_FACTOR
    }
}

impl From<i32> for Fixed {
    fn from(value: i32) -> Self {
        Self::from_i32(value)
    }
}

impl F26Dot6 {
    /// Creates a 26.6 fixed point value from a 32 bit integer.
    #[inline(always)]
    pub const fn from_i32(i: i32) -> Self {
        Self(i << 6)
    }

    /// Converts a 26.6 fixed point value to a 32 bit integer, rounding off
    /// the fractional bits.
    #[inline(always)]
    pub const fn to_i32(self) -> i32 {
        self.0.wrapping_add(32) >> 6
    }

    /// Converts a 26.6 fixed point value to a single precision floating
    /// point value.
    ///
    /// This operation is lossy. Use `to_f64()` for a lossless conversion.
    #[inline(always)]
    pub fn to_f32(self) -> f32 {
        const SCALE_FACTOR: f32 = 1.0 / 64.0;
        self.0 as f32 * SCALE_FACTOR
    }
}

impl F2Dot14 {
    /// Converts a 2.14 to 16.16 fixed point value.
    #[inline(always)]
    pub const fn to_fixed(self) -> Fixed {
        Fixed(self.0 as i32 * 4)
    }
}

#[cfg(test)]
mod tests {
    #![allow(overflowing_literals)] // we want to specify byte values directly
    use super::*;

    #[test]
    fn f2dot14_floats() {
        // Examples from https://docs.microsoft.com/en-us/typography/opentype/spec/otff#data-types
        assert_eq!(F2Dot14(0x7fff), F2Dot14::from_f32(1.999939));
        assert_eq!(F2Dot14(0x7000), F2Dot14::from_f32(1.75));
        assert_eq!(F2Dot14(0x0001), F2Dot14::from_f32(0.0000610356));
        assert_eq!(F2Dot14(0x0000), F2Dot14::from_f32(0.0));
        assert_eq!(F2Dot14(0xffff), F2Dot14::from_f32(-0.000061));
        assert_eq!(F2Dot14(0x8000), F2Dot14::from_f32(-2.0));
    }

    #[test]
    fn roundtrip_f2dot14() {
        for i in i16::MIN..=i16::MAX {
            let val = F2Dot14(i);
            assert_eq!(val, F2Dot14::from_f32(val.to_f32()));
        }
    }

    #[test]
    fn round_f2dot14() {
        assert_eq!(F2Dot14(0x7000).round(), F2Dot14::from_f32(-2.0));
        assert_eq!(F2Dot14(0x1F00).round(), F2Dot14::from_f32(0.0));
        assert_eq!(F2Dot14(0x2000).round(), F2Dot14::from_f32(1.0));
    }

    #[test]
    fn round_fixed() {
        //TODO: make good test cases
        assert_eq!(Fixed(0x0001_7FFE).round(), Fixed(0x0001_0000));
        assert_eq!(Fixed(0x0001_7FFF).round(), Fixed(0x0001_0000));
        assert_eq!(Fixed(0x0001_8000).round(), Fixed(0x0002_0000));
    }

    // disabled because it's slow; these were just for my edification anyway
    //#[test]
    //fn roundtrip_fixed() {
    //for i in i32::MIN..=i32::MAX {
    //let val = Fixed(i);
    //assert_eq!(val, Fixed::from_f64(val.to_f64()));
    //}
    //}

    #[test]
    fn fixed_floats() {
        assert_eq!(Fixed(0x7fff_0000), Fixed::from_f64(32767.));
        assert_eq!(Fixed(0x7000_0001), Fixed::from_f64(28672.00001525879));
        assert_eq!(Fixed(0x0001_0000), Fixed::from_f64(1.0));
        assert_eq!(Fixed(0x0000_0000), Fixed::from_f64(0.0));
        assert_eq!(
            Fixed(i32::from_be_bytes([0xff; 4])),
            Fixed::from_f64(-0.000015259)
        );
        assert_eq!(Fixed(0x7fff_ffff), Fixed::from_f64(32768.0));
    }

    // We lost the f64::round() intrinsic when dropping std and the
    // alternative implementation was very slightly incorrect, throwing
    // off some tests. This makes sure we match.
    #[test]
    fn fixed_floats_rounding() {
        fn with_round_intrinsic(x: f64) -> Fixed {
            Fixed((x * 65536.0).round() as i32)
        }
        // These particular values were tripping up tests
        let inputs = [0.05, 0.6, 0.2, 0.4, 0.67755];
        for input in inputs {
            assert_eq!(Fixed::from_f64(input), with_round_intrinsic(input));
            // Test negated values as well for good measure
            assert_eq!(Fixed::from_f64(-input), with_round_intrinsic(-input));
        }
    }

    #[test]
    fn fixed_to_int() {
        assert_eq!(Fixed::from_f64(1.0).to_i32(), 1);
        assert_eq!(Fixed::from_f64(1.5).to_i32(), 2);
        assert_eq!(F26Dot6::from_f64(1.0).to_i32(), 1);
        assert_eq!(F26Dot6::from_f64(1.5).to_i32(), 2);
    }

    #[test]
    fn fixed_from_int() {
        assert_eq!(Fixed::from_i32(1000).to_bits(), 1000 << 16);
        assert_eq!(F26Dot6::from_i32(1000).to_bits(), 1000 << 6);
    }

    #[test]
    fn fixed_to_f26dot6() {
        assert_eq!(Fixed::from_f64(42.5).to_f26dot6(), F26Dot6::from_f64(42.5));
    }

    #[test]
    fn fixed_muldiv() {
        assert_eq!(
            Fixed::from_f64(0.5) * Fixed::from_f64(2.0),
            Fixed::from_f64(1.0)
        );
        assert_eq!(
            Fixed::from_f64(0.5) / Fixed::from_f64(2.0),
            Fixed::from_f64(0.25)
        );
    }
}