font_types/
raw.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
//! types for working with raw big-endian bytes

/// A trait for font scalars.
///
/// This is an internal trait for encoding and decoding big-endian bytes.
///
/// You do not need to implement this trait directly; it is an implementation
/// detail of the [`BigEndian`] wrapper.
pub trait Scalar: Sized {
    /// The raw byte representation of this type.
    type Raw: sealed::BeByteArray;

    /// Create an instance of this type from raw big-endian bytes
    fn from_raw(raw: Self::Raw) -> Self;

    /// Encode this type as raw big-endian bytes
    fn to_raw(self) -> Self::Raw;

    /// Attempt to read a scalar from a slice.
    ///
    /// This will always succeed if `slice.len() == Self::RAW_BYTE_LEN`, and will
    /// always return `None` otherwise.
    fn read(slice: &[u8]) -> Option<Self> {
        sealed::BeByteArray::from_slice(slice).map(Self::from_raw)
    }
}

/// A trait for types that have a known, constant size.
pub trait FixedSize: Sized {
    /// The raw size of this type, in bytes.
    ///
    /// This is the size required to represent this type in a font file, which
    /// may differ from the size of the native type:
    ///
    /// ```
    /// # use font_types::{FixedSize, Offset24};
    /// assert_eq!(std::mem::size_of::<u16>(), u16::RAW_BYTE_LEN);
    /// assert_eq!(Offset24::RAW_BYTE_LEN, 3);
    /// assert_eq!(std::mem::size_of::<Offset24>(), 4);
    /// ```
    const RAW_BYTE_LEN: usize;
}

/// we hide this trait; it isn't part of the public API, and this clarifies
/// the guarantee that it is only implemented for [u8; N]
mod sealed {
    /// A trait representing any fixed-size big-endian byte array.
    ///
    /// This is only used in `Scalar`, as a way of expressing the condition that the
    /// `Raw` type is always a fixed-size byte array.
    #[cfg(not(feature = "bytemuck"))]
    pub trait BeByteArray: Copy + AsRef<[u8]> {
        /// Must always succeed for `[u8; N]` if `slice.len() == N`, must fail otherwise
        fn from_slice(slice: &[u8]) -> Option<Self>;
    }
    #[cfg(feature = "bytemuck")]
    pub trait BeByteArray:
        Copy + AsRef<[u8]> + bytemuck::AnyBitPattern + bytemuck::Zeroable
    {
        /// Must always succeed for `[u8; N]` if `slice.len() == N`, must fail otherwise
        fn from_slice(slice: &[u8]) -> Option<Self>;
    }

    impl<const N: usize> BeByteArray for [u8; N] {
        fn from_slice(slice: &[u8]) -> Option<Self> {
            slice.try_into().ok()
        }
    }
}

/// A wrapper around raw big-endian bytes for some type.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(transparent)]
pub struct BigEndian<T: Scalar>(pub(crate) T::Raw);

// # SAFETY:
//
// `BigEndian<T>` has the bound `T: Scalar`, and contains only a single value,
// `<T as Scalar>::Raw` which is only ever a byte array.
#[cfg(feature = "bytemuck")]
unsafe impl<T> bytemuck::Zeroable for BigEndian<T> where T: Scalar + Copy {}
#[cfg(feature = "bytemuck")]
unsafe impl<T> bytemuck::AnyBitPattern for BigEndian<T> where T: Scalar + Copy + 'static {}

impl<T: Scalar> BigEndian<T> {
    /// construct a new `BigEndian<T>` from raw bytes
    pub fn new(raw: T::Raw) -> BigEndian<T> {
        BigEndian(raw)
    }

    /// Attempt to construct a new raw value from this slice.
    ///
    /// This will fail if `slice.len() != T::RAW_BYTE_LEN`.
    pub fn from_slice(slice: &[u8]) -> Option<Self> {
        sealed::BeByteArray::from_slice(slice).map(Self)
    }

    /// Convert this raw type to its native representation.
    #[inline(always)]
    pub fn get(&self) -> T {
        T::from_raw(self.0)
    }

    /// Set the value, overwriting the bytes.
    pub fn set(&mut self, value: T) {
        self.0 = value.to_raw();
    }

    /// Get the raw big-endian bytes.
    pub fn be_bytes(&self) -> &[u8] {
        self.0.as_ref()
    }
}

impl<T: Scalar> From<T> for BigEndian<T> {
    #[inline]
    fn from(val: T) -> Self {
        BigEndian(val.to_raw())
    }
}

impl<T: Scalar + Default> Default for BigEndian<T> {
    fn default() -> Self {
        Self::from(T::default())
    }
}

//NOTE: do to the orphan rules, we cannot impl the inverse of this, e.g.
// impl<T> PartialEq<BigEndian<T>> for T (<https://doc.rust-lang.org/error_codes/E0210.html>)
impl<T: Scalar + Copy + PartialEq> PartialEq<T> for BigEndian<T> {
    fn eq(&self, other: &T) -> bool {
        self.get() == *other
    }
}

impl<T: Scalar + Copy + PartialOrd + PartialEq> PartialOrd for BigEndian<T>
where
    <T as Scalar>::Raw: PartialEq,
{
    fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
        self.get().partial_cmp(&other.get())
    }
}

impl<T: Scalar + Copy + Ord + Eq> Ord for BigEndian<T>
where
    <T as Scalar>::Raw: Eq,
{
    fn cmp(&self, other: &Self) -> core::cmp::Ordering {
        self.get().cmp(&other.get())
    }
}

impl<T: Scalar> FixedSize for T {
    const RAW_BYTE_LEN: usize = std::mem::size_of::<T::Raw>();
}

impl<T: Scalar> FixedSize for BigEndian<T> {
    const RAW_BYTE_LEN: usize = T::RAW_BYTE_LEN;
}

/// An internal macro for implementing the `RawType` trait.
#[macro_export]
macro_rules! newtype_scalar {
    ($ty:ident, $raw:ty) => {
        impl $crate::raw::Scalar for $ty {
            type Raw = $raw;
            fn to_raw(self) -> $raw {
                self.0.to_raw()
            }

            #[inline(always)]
            fn from_raw(raw: $raw) -> Self {
                Self($crate::raw::Scalar::from_raw(raw))
            }
        }
    };
}

macro_rules! int_scalar {
    ($ty:ty, $raw:ty) => {
        impl crate::raw::Scalar for $ty {
            type Raw = $raw;
            fn to_raw(self) -> $raw {
                self.to_be_bytes()
            }

            #[inline(always)]
            fn from_raw(raw: $raw) -> $ty {
                Self::from_be_bytes(raw)
            }
        }
    };
}

int_scalar!(u8, [u8; 1]);
int_scalar!(i8, [u8; 1]);
int_scalar!(u16, [u8; 2]);
int_scalar!(i16, [u8; 2]);
int_scalar!(u32, [u8; 4]);
int_scalar!(i32, [u8; 4]);
int_scalar!(i64, [u8; 8]);
int_scalar!(crate::Uint24, [u8; 3]);
int_scalar!(crate::Int24, [u8; 3]);

impl<T: std::fmt::Debug + Scalar + Copy> std::fmt::Debug for BigEndian<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        self.get().fmt(f)
    }
}

impl<T: std::fmt::Display + Scalar + Copy> std::fmt::Display for BigEndian<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        self.get().fmt(f)
    }
}