franklin_crypto/jubjub/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
//! Jubjub is a twisted Edwards curve defined over the BLS12-381 scalar
//! field, Fr. It takes the form `-x^2 + y^2 = 1 + dx^2y^2` with
//! `d = -(10240/10241)`. It is birationally equivalent to a Montgomery
//! curve of the form `y^2 = x^3 + Ax^2 + x` with `A = 40962`. This
//! value `A` is the smallest integer choice such that:
//!
//! * `(A - 2) / 4` is a small integer (`10240`).
//! * `A^2 - 4` is quadratic nonresidue.
//! * The group order of the curve and its quadratic twist has a large
//! prime factor.
//!
//! Jubjub has `s = 0x0e7db4ea6533afa906673b0101343b00a6682093ccc81082d0970e5ed6f72cb7`
//! as the prime subgroup order, with cofactor 8. (The twist has
//! cofactor 4.)
//!
//! It is a complete twisted Edwards curve, so the equivalence with
//! the Montgomery curve forms a group isomorphism, allowing points
//! to be freely converted between the two forms.
use bellman::pairing::Engine;
use bellman::pairing::ff::{Field, PrimeField, SqrtField};
use group_hash::group_hash;
use constants;
use bellman::pairing::bls12_381::{Bls12, Fr};
/// This is an implementation of the twisted Edwards Jubjub curve.
pub mod edwards;
/// This is an implementation of the birationally equivalent
/// Montgomery curve.
pub mod montgomery;
/// This is an implementation of the scalar field for Jubjub.
pub mod fs;
#[cfg(test)]
pub mod tests;
/// Point of unknown order.
pub enum Unknown {}
/// Point of prime order.
pub enum PrimeOrder {}
/// Fixed generators of the Jubjub curve of unknown
/// exponent.
#[derive(Copy, Clone)]
pub enum FixedGenerators {
/// The prover will demonstrate knowledge of discrete log
/// with respect to this base when they are constructing
/// a proof, in order to authorize proof construction.
ProofGenerationKey = 0,
/// The note commitment is randomized over this generator.
NoteCommitmentRandomness = 1,
/// The node commitment is randomized again by the position
/// in order to supply the nullifier computation with a
/// unique input w.r.t. the note being spent, to prevent
/// Faerie gold attacks.
NullifierPosition = 2,
/// The value commitment is used to check balance between
/// inputs and outputs. The value is placed over this
/// generator.
ValueCommitmentValue = 3,
/// The value commitment is randomized over this generator,
/// for privacy.
ValueCommitmentRandomness = 4,
/// The spender proves discrete log with respect to this
/// base at spend time.
SpendingKeyGenerator = 5,
Max = 6,
}
pub trait ToUniform {
fn to_uniform(digest: &[u8]) -> Self;
fn to_uniform_32(digest: &[u8]) -> Self;
}
/// This is an extension to the pairing Engine trait which
/// offers a scalar field for the embedded curve (Jubjub)
/// and some pre-computed parameters.
pub trait JubjubEngine: Engine {
/// The scalar field of the Jubjub curve
type Fs: PrimeField + SqrtField + ToUniform;
/// The parameters of Jubjub and the Sapling protocol
type Params: JubjubParams<Self>;
}
/// The pre-computed parameters for Jubjub, including curve
/// constants and various limits and window tables.
pub trait JubjubParams<E: JubjubEngine>: Sized {
/// The `d` constant of the twisted Edwards curve.
fn edwards_d(&self) -> &E::Fr;
/// The `A` constant of the birationally equivalent Montgomery curve.
fn montgomery_a(&self) -> &E::Fr;
/// The `A` constant, doubled.
fn montgomery_2a(&self) -> &E::Fr;
/// The scaling factor used for conversion from the Montgomery form.
fn scale(&self) -> &E::Fr;
/// Returns the generators (for each segment) used in all Pedersen commitments.
fn pedersen_hash_generators(&self) -> &[edwards::Point<E, PrimeOrder>];
/// Returns the exp table for Pedersen hashes.
fn pedersen_hash_exp_table(&self) -> &[Vec<Vec<edwards::Point<E, PrimeOrder>>>];
/// Returns the maximum number of chunks per segment of the Pedersen hash.
fn pedersen_hash_chunks_per_generator(&self) -> usize;
/// Returns the pre-computed window tables [-4, 3, 2, 1, 1, 2, 3, 4] of different
/// magnitudes of the Pedersen hash segment generators.
fn pedersen_circuit_generators(&self) -> &[Vec<Vec<(E::Fr, E::Fr)>>];
/// Returns the number of chunks needed to represent a full scalar during fixed-base
/// exponentiation.
fn fixed_base_chunks_per_generator(&self) -> usize;
/// Returns a fixed generator.
fn generator(&self, base: FixedGenerators) -> &edwards::Point<E, PrimeOrder>;
/// Returns a window table [0, 1, ..., 8] for different magnitudes of some
/// fixed generator.
fn circuit_generators(&self, base: FixedGenerators) -> &[Vec<(E::Fr, E::Fr)>];
/// Returns the window size for exponentiation of Pedersen hash generators
/// outside the circuit
fn pedersen_hash_exp_window_size(&self) -> u32;
}
impl JubjubEngine for Bls12 {
type Fs = self::fs::Fs;
type Params = JubjubBls12;
}
pub struct JubjubBls12 {
edwards_d: Fr,
montgomery_a: Fr,
montgomery_2a: Fr,
scale: Fr,
pedersen_hash_generators: Vec<edwards::Point<Bls12, PrimeOrder>>,
pedersen_hash_exp: Vec<Vec<Vec<edwards::Point<Bls12, PrimeOrder>>>>,
pedersen_circuit_generators: Vec<Vec<Vec<(Fr, Fr)>>>,
fixed_base_generators: Vec<edwards::Point<Bls12, PrimeOrder>>,
fixed_base_circuit_generators: Vec<Vec<Vec<(Fr, Fr)>>>,
}
impl JubjubParams<Bls12> for JubjubBls12 {
fn edwards_d(&self) -> &Fr {
&self.edwards_d
}
fn montgomery_a(&self) -> &Fr {
&self.montgomery_a
}
fn montgomery_2a(&self) -> &Fr {
&self.montgomery_2a
}
fn scale(&self) -> &Fr {
&self.scale
}
fn pedersen_hash_generators(&self) -> &[edwards::Point<Bls12, PrimeOrder>] {
&self.pedersen_hash_generators
}
fn pedersen_hash_exp_table(&self) -> &[Vec<Vec<edwards::Point<Bls12, PrimeOrder>>>] {
&self.pedersen_hash_exp
}
fn pedersen_hash_chunks_per_generator(&self) -> usize {
63
}
fn fixed_base_chunks_per_generator(&self) -> usize {
84
}
fn pedersen_circuit_generators(&self) -> &[Vec<Vec<(Fr, Fr)>>] {
&self.pedersen_circuit_generators
}
fn generator(&self, base: FixedGenerators) -> &edwards::Point<Bls12, PrimeOrder> {
&self.fixed_base_generators[base as usize]
}
fn circuit_generators(&self, base: FixedGenerators) -> &[Vec<(Fr, Fr)>] {
&self.fixed_base_circuit_generators[base as usize][..]
}
fn pedersen_hash_exp_window_size(&self) -> u32 {
8
}
}
impl JubjubBls12 {
pub fn new() -> Self {
let montgomery_a = Fr::from_str("40962").unwrap();
let mut montgomery_2a = montgomery_a;
montgomery_2a.double();
let mut tmp_params = JubjubBls12 {
// d = -(10240/10241)
edwards_d: Fr::from_str("19257038036680949359750312669786877991949435402254120286184196891950884077233").unwrap(),
// A = 40962
montgomery_a: montgomery_a,
// 2A = 2.A
montgomery_2a: montgomery_2a,
// scaling factor = sqrt(4 / (a - d))
scale: Fr::from_str("17814886934372412843466061268024708274627479829237077604635722030778476050649").unwrap(),
// We'll initialize these below
pedersen_hash_generators: vec![],
pedersen_hash_exp: vec![],
pedersen_circuit_generators: vec![],
fixed_base_generators: vec![],
fixed_base_circuit_generators: vec![],
};
fn find_group_hash<E: JubjubEngine>(m: &[u8], personalization: &[u8; 8], params: &E::Params) -> edwards::Point<E, PrimeOrder> {
let mut tag = m.to_vec();
let i = tag.len();
tag.push(0u8);
loop {
let gh = group_hash(&tag, personalization, params);
// We don't want to overflow and start reusing generators
assert!(tag[i] != u8::max_value());
tag[i] += 1;
if let Some(gh) = gh {
break gh;
}
}
}
// Create the bases for the Pedersen hashes
{
let mut pedersen_hash_generators = vec![];
for m in 0..5 {
use byteorder::{LittleEndian, WriteBytesExt};
let mut segment_number = [0u8; 4];
(&mut segment_number[0..4]).write_u32::<LittleEndian>(m).unwrap();
pedersen_hash_generators.push(find_group_hash(&segment_number, constants::PEDERSEN_HASH_GENERATORS_PERSONALIZATION, &tmp_params));
}
// Check for duplicates, far worse than spec inconsistencies!
for (i, p1) in pedersen_hash_generators.iter().enumerate() {
if p1 == &edwards::Point::zero() {
panic!("Neutral element!");
}
for p2 in pedersen_hash_generators.iter().skip(i + 1) {
if p1 == p2 {
panic!("Duplicate generator!");
}
}
}
tmp_params.pedersen_hash_generators = pedersen_hash_generators;
}
// Create the exp table for the Pedersen hash generators
{
let mut pedersen_hash_exp = vec![];
for g in &tmp_params.pedersen_hash_generators {
let mut g = g.clone();
let window = tmp_params.pedersen_hash_exp_window_size();
let mut tables = vec![];
let mut num_bits = 0;
while num_bits <= fs::Fs::NUM_BITS {
let mut table = Vec::with_capacity(1 << window);
let mut base = edwards::Point::zero();
for _ in 0..(1 << window) {
table.push(base.clone());
base = base.add(&g, &tmp_params);
}
tables.push(table);
num_bits += window;
for _ in 0..window {
g = g.double(&tmp_params);
}
}
pedersen_hash_exp.push(tables);
}
tmp_params.pedersen_hash_exp = pedersen_hash_exp;
}
// Create the bases for other parts of the protocol
{
let mut fixed_base_generators = vec![edwards::Point::zero(); FixedGenerators::Max as usize];
fixed_base_generators[FixedGenerators::ProofGenerationKey as usize] = find_group_hash(&[], constants::PROOF_GENERATION_KEY_BASE_GENERATOR_PERSONALIZATION, &tmp_params);
fixed_base_generators[FixedGenerators::NoteCommitmentRandomness as usize] = find_group_hash(b"r", constants::PEDERSEN_HASH_GENERATORS_PERSONALIZATION, &tmp_params);
fixed_base_generators[FixedGenerators::NullifierPosition as usize] = find_group_hash(&[], constants::NULLIFIER_POSITION_IN_TREE_GENERATOR_PERSONALIZATION, &tmp_params);
fixed_base_generators[FixedGenerators::ValueCommitmentValue as usize] = find_group_hash(b"v", constants::VALUE_COMMITMENT_GENERATOR_PERSONALIZATION, &tmp_params);
fixed_base_generators[FixedGenerators::ValueCommitmentRandomness as usize] = find_group_hash(b"r", constants::VALUE_COMMITMENT_GENERATOR_PERSONALIZATION, &tmp_params);
fixed_base_generators[FixedGenerators::SpendingKeyGenerator as usize] = find_group_hash(&[], constants::SPENDING_KEY_GENERATOR_PERSONALIZATION, &tmp_params);
// Check for duplicates, far worse than spec inconsistencies!
for (i, p1) in fixed_base_generators.iter().enumerate() {
if p1 == &edwards::Point::zero() {
panic!("Neutral element!");
}
for p2 in fixed_base_generators.iter().skip(i + 1) {
if p1 == p2 {
panic!("Duplicate generator!");
}
}
}
tmp_params.fixed_base_generators = fixed_base_generators;
}
// Create the 2-bit window table lookups for each 4-bit
// "chunk" in each segment of the Pedersen hash
{
let mut pedersen_circuit_generators = vec![];
// Process each segment
for gen in tmp_params.pedersen_hash_generators.iter().cloned() {
let mut gen = montgomery::Point::from_edwards(&gen, &tmp_params);
let mut windows = vec![];
for _ in 0..tmp_params.pedersen_hash_chunks_per_generator() {
// Create (x, y) coeffs for this chunk
let mut coeffs = vec![];
let mut g = gen.clone();
// coeffs = g, g*2, g*3, g*4
for _ in 0..4 {
coeffs.push(g.into_xy().expect("cannot produce O"));
g = g.add(&gen, &tmp_params);
}
windows.push(coeffs);
// Our chunks are separated by 2 bits to prevent overlap.
for _ in 0..4 {
gen = gen.double(&tmp_params);
}
}
pedersen_circuit_generators.push(windows);
}
tmp_params.pedersen_circuit_generators = pedersen_circuit_generators;
}
// Create the 3-bit window table lookups for fixed-base
// exp of each base in the protocol.
{
let mut fixed_base_circuit_generators = vec![];
for mut gen in tmp_params.fixed_base_generators.iter().cloned() {
let mut windows = vec![];
for _ in 0..tmp_params.fixed_base_chunks_per_generator() {
let mut coeffs = vec![(Fr::zero(), Fr::one())];
let mut g = gen.clone();
for _ in 0..7 {
coeffs.push(g.into_xy());
g = g.add(&gen, &tmp_params);
}
windows.push(coeffs);
// gen = gen * 8
gen = g;
}
fixed_base_circuit_generators.push(windows);
}
tmp_params.fixed_base_circuit_generators = fixed_base_circuit_generators;
}
tmp_params
}
}
// #[test]
// fn test_jubjub_bls12() {
// let params = JubjubBls12::new();
// tests::test_suite::<Bls12>(¶ms);
// let test_repr = hex!("9d12b88b08dcbef8a11ee0712d94cb236ee2f4ca17317075bfafc82ce3139d31");
// let p = edwards::Point::<Bls12, _>::read(&test_repr[..], ¶ms).unwrap();
// let q = edwards::Point::<Bls12, _>::get_for_y(
// Fr::from_str("22440861827555040311190986994816762244378363690614952020532787748720529117853").unwrap(),
// false,
// ¶ms
// ).unwrap();
// assert!(p == q);
// // Same thing, but sign bit set
// let test_repr = hex!("9d12b88b08dcbef8a11ee0712d94cb236ee2f4ca17317075bfafc82ce3139db1");
// let p = edwards::Point::<Bls12, _>::read(&test_repr[..], ¶ms).unwrap();
// let q = edwards::Point::<Bls12, _>::get_for_y(
// Fr::from_str("22440861827555040311190986994816762244378363690614952020532787748720529117853").unwrap(),
// true,
// ¶ms
// ).unwrap();
// assert!(p == q);
// }
// #[test]
// fn test_jubjub_bls12_num_generators() {
// let params = JubjubBls12::new();
// assert_eq!(params.pedersen_circuit_generators.len(), 5);
// }