franklin_crypto/jubjub/montgomery.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
use bellman::pairing::ff::{BitIterator, Field, PrimeField, PrimeFieldRepr, SqrtField};
use super::{edwards, JubjubEngine, JubjubParams, PrimeOrder, Unknown};
use rand::Rng;
use std::marker::PhantomData;
// Represents the affine point (X, Y)
pub struct Point<E: JubjubEngine, Subgroup> {
x: E::Fr,
y: E::Fr,
infinity: bool,
_marker: PhantomData<Subgroup>,
}
fn convert_subgroup<E: JubjubEngine, S1, S2>(from: &Point<E, S1>) -> Point<E, S2> {
Point {
x: from.x,
y: from.y,
infinity: from.infinity,
_marker: PhantomData,
}
}
impl<E: JubjubEngine> From<Point<E, PrimeOrder>> for Point<E, Unknown> {
fn from(p: Point<E, PrimeOrder>) -> Point<E, Unknown> {
convert_subgroup(&p)
}
}
impl<E: JubjubEngine, Subgroup> Clone for Point<E, Subgroup> {
fn clone(&self) -> Self {
convert_subgroup(self)
}
}
impl<E: JubjubEngine, Subgroup> PartialEq for Point<E, Subgroup> {
fn eq(&self, other: &Point<E, Subgroup>) -> bool {
match (self.infinity, other.infinity) {
(true, true) => true,
(true, false) | (false, true) => false,
(false, false) => self.x == other.x && self.y == other.y,
}
}
}
impl<E: JubjubEngine> Point<E, Unknown> {
pub fn get_for_x(x: E::Fr, sign: bool, params: &E::Params) -> Option<Self> {
// Given an x on the curve, y = sqrt(x^3 + A*x^2 + x)
let mut x2 = x;
x2.square();
let mut rhs = x2;
rhs.mul_assign(params.montgomery_a());
rhs.add_assign(&x);
x2.mul_assign(&x);
rhs.add_assign(&x2);
match rhs.sqrt() {
Some(mut y) => {
if y.into_repr().is_odd() != sign {
y.negate();
}
return Some(Point {
x: x,
y: y,
infinity: false,
_marker: PhantomData,
});
}
None => None,
}
}
/// This guarantees the point is in the prime order subgroup
#[must_use]
pub fn mul_by_cofactor(&self, params: &E::Params) -> Point<E, PrimeOrder> {
let tmp = self.double(params).double(params).double(params);
convert_subgroup(&tmp)
}
pub fn rand<R: Rng>(rng: &mut R, params: &E::Params) -> Self {
loop {
let x: E::Fr = rng.gen();
match Self::get_for_x(x, rng.gen(), params) {
Some(p) => return p,
None => {}
}
}
}
}
impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
/// Convert from an Edwards point
pub fn from_edwards(e: &edwards::Point<E, Subgroup>, params: &E::Params) -> Self {
let (x, y) = e.into_xy();
if y == E::Fr::one() {
// The only solution for y = 1 is x = 0. (0, 1) is
// the neutral element, so we map this to the point
// at infinity.
Point::zero()
} else {
// The map from a twisted Edwards curve is defined as
// (x, y) -> (u, v) where
// u = (1 + y) / (1 - y)
// v = u / x
//
// This mapping is not defined for y = 1 and for x = 0.
//
// We have that y != 1 above. If x = 0, the only
// solutions for y are 1 (contradiction) or -1.
if x.is_zero() {
// (0, -1) is the point of order two which is not
// the neutral element, so we map it to (0, 0) which is
// the only affine point of order 2.
Point {
x: E::Fr::zero(),
y: E::Fr::zero(),
infinity: false,
_marker: PhantomData,
}
} else {
// The mapping is defined as above.
//
// (x, y) -> (u, v) where
// u = (1 + y) / (1 - y)
// v = u / x
let mut u = E::Fr::one();
u.add_assign(&y);
{
let mut tmp = E::Fr::one();
tmp.sub_assign(&y);
u.mul_assign(&tmp.inverse().unwrap())
}
let mut v = u;
v.mul_assign(&x.inverse().unwrap());
// Scale it into the correct curve constants
v.mul_assign(params.scale());
Point {
x: u,
y: v,
infinity: false,
_marker: PhantomData,
}
}
}
}
/// Attempts to cast this as a prime order element, failing if it's
/// not in the prime order subgroup.
pub fn as_prime_order(&self, params: &E::Params) -> Option<Point<E, PrimeOrder>> {
if self.mul(E::Fs::char(), params) == Point::zero() {
Some(convert_subgroup(self))
} else {
None
}
}
pub fn zero() -> Self {
Point {
x: E::Fr::zero(),
y: E::Fr::zero(),
infinity: true,
_marker: PhantomData,
}
}
pub fn into_xy(&self) -> Option<(E::Fr, E::Fr)> {
if self.infinity {
None
} else {
Some((self.x, self.y))
}
}
#[must_use]
pub fn negate(&self) -> Self {
let mut p = self.clone();
p.y.negate();
p
}
#[must_use]
pub fn double(&self, params: &E::Params) -> Self {
if self.infinity {
return Point::zero();
}
// (0, 0) is the point of order 2. Doubling
// produces the point at infinity.
if self.y == E::Fr::zero() {
return Point::zero();
}
// This is a standard affine point doubling formula
// See 4.3.2 The group law for Weierstrass curves
// Montgomery curves and the Montgomery Ladder
// Daniel J. Bernstein and Tanja Lange
let mut delta = E::Fr::one();
{
let mut tmp = params.montgomery_a().clone();
tmp.mul_assign(&self.x);
tmp.double();
delta.add_assign(&tmp);
}
{
let mut tmp = self.x;
tmp.square();
delta.add_assign(&tmp);
tmp.double();
delta.add_assign(&tmp);
}
{
let mut tmp = self.y;
tmp.double();
delta.mul_assign(&tmp.inverse().expect("y is nonzero so this must be nonzero"));
}
let mut x3 = delta;
x3.square();
x3.sub_assign(params.montgomery_a());
x3.sub_assign(&self.x);
x3.sub_assign(&self.x);
let mut y3 = x3;
y3.sub_assign(&self.x);
y3.mul_assign(&delta);
y3.add_assign(&self.y);
y3.negate();
Point {
x: x3,
y: y3,
infinity: false,
_marker: PhantomData,
}
}
#[must_use]
pub fn add(&self, other: &Self, params: &E::Params) -> Self {
// This is a standard affine point addition formula
// See 4.3.2 The group law for Weierstrass curves
// Montgomery curves and the Montgomery Ladder
// Daniel J. Bernstein and Tanja Lange
match (self.infinity, other.infinity) {
(true, true) => Point::zero(),
(true, false) => other.clone(),
(false, true) => self.clone(),
(false, false) => {
if self.x == other.x {
if self.y == other.y {
self.double(params)
} else {
Point::zero()
}
} else {
let mut delta = other.y;
delta.sub_assign(&self.y);
{
let mut tmp = other.x;
tmp.sub_assign(&self.x);
delta.mul_assign(&tmp.inverse().expect("self.x != other.x, so this must be nonzero"));
}
let mut x3 = delta;
x3.square();
x3.sub_assign(params.montgomery_a());
x3.sub_assign(&self.x);
x3.sub_assign(&other.x);
let mut y3 = x3;
y3.sub_assign(&self.x);
y3.mul_assign(&delta);
y3.add_assign(&self.y);
y3.negate();
Point {
x: x3,
y: y3,
infinity: false,
_marker: PhantomData,
}
}
}
}
}
#[must_use]
pub fn mul<S: Into<<E::Fs as PrimeField>::Repr>>(&self, scalar: S, params: &E::Params) -> Self {
// Standard double-and-add scalar multiplication
let mut res = Self::zero();
for b in BitIterator::new(scalar.into()) {
res = res.double(params);
if b {
res = res.add(self, params);
}
}
res
}
}