1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
//! # The `impl_instructions!` macro
//!
//! The heart of this crate's implementation is the private `impl_instructions!` macro. This macro
//! is used to generate the `Instruction` and `Opcode` types along with their implementations.
//!
//! The intention is to allow for having a single source of truth from which each of the
//! instruction-related types and implementations are derived.
//!
//! Its usage looks like this:
//!
//! ```rust,ignore
//! impl_instructions! {
//! "Adds two registers."
//! 0x10 ADD add [RegId RegId RegId]
//! "Bitwise ANDs two registers."
//! 0x11 AND and [RegId RegId RegId]
//! // ...
//! }
//! ```
//!
//! Each instruction's row includes:
//!
//! - A short docstring.
//! - The Opcode byte value.
//! - An uppercase identifier (for generating variants and types).
//! - A lowercase identifier (for generating the shorthand instruction constructor).
//! - The instruction layout (for the `new` and `unpack` functions).
//!
//! The following sections describe each of the items that are derived from the
//! `impl_instructions!` table in more detail.
//!
//! ## The `Opcode` enum
//!
//! Represents the bytecode portion of an instruction.
//!
//! ```rust,ignore
//! /// Solely the opcode portion of an instruction represented as a single byte.
//! #[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
//! #[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
//! #[repr(u8)]
//! pub enum Opcode {
//! /// Adds two registers.
//! ADD = 0x10,
//! /// Bitwise ANDs two registers.
//! AND = 0x11,
//! // ...
//! }
//! ```
//!
//! A `TryFrom<u8>` implementation is also provided, producing an `Err(InvalidOpcode)` in the case
//! that the byte represents a reserved or undefined value.
//!
//! ```rust
//! # use fuel_asm::{InvalidOpcode, Opcode};
//! assert_eq!(Opcode::try_from(0x10), Ok(Opcode::ADD));
//! assert_eq!(Opcode::try_from(0x11), Ok(Opcode::AND));
//! assert_eq!(Opcode::try_from(0), Err(InvalidOpcode));
//! ```
//!
//! ## The `Instruction` enum
//!
//! Represents a single, full instruction, discriminated by its `Opcode`.
//!
//! ```rust,ignore
//! /// Representation of a single instruction for the interpreter.
//! ///
//! /// The opcode is represented in the tag (variant), or may be retrieved in the form of an
//! /// `Opcode` byte using the `opcode` method.
//! ///
//! /// The register and immediate data associated with the instruction is represented within
//! /// an inner unit type wrapper around the 3 remaining bytes.
//! #[derive(Clone, Copy, Eq, Hash, PartialEq)]
//! #[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
//! pub enum Instruction {
//! /// Adds two registers.
//! ADD(op::ADD),
//! /// Bitwise ANDs two registers.
//! AND(op::AND),
//! // ...
//! }
//! ```
//!
//! The `From<Instruction> for u32` (aka `RawInstruction`) and `TryFrom<u32> for Instruction`
//! implementations can be found in the crate root.
//!
//! ## A unique unit type per operation
//!
//! In order to reduce the likelihood of misusing unrelated register IDs or immediate values, we
//! generate a unique unit type for each type of operation (i.e instruction variant) and guard
//! access to the relevant register IDs and immediate values behind each type's unique methods.
//!
//! These unique operation types are generated as follows within a dedicated `op` module:
//!
//! ```rust,ignore
//! pub mod op {
//! //! Definitions and implementations for each unique instruction type, one for each
//! //! unique `Opcode` variant.
//!
//! // A unique type for each operation.
//!
//! /// Adds two registers.
//! pub struct ADD([u8; 3]);
//!
//! /// Bitwise ANDs two registers.
//! pub struct AND([u8; 3]);
//!
//! // ...
//!
//! // An implementation for each unique type.
//!
//! impl ADD {
//! pub const OPCODE: Opcode = Opcode::ADD;
//!
//! /// Construct the instruction from its parts.
//! pub fn new(ra: RegId, rb: RegId, rc: RegId) -> Self {
//! Self(pack::bytes_from_ra_rb_rc(ra, rb, rc))
//! }
//!
//! /// Convert the instruction into its parts.
//! pub fn unpack(self) -> (RegId, RegId, RegId) {
//! unpack::ra_rb_rc_from_bytes(self.0)
//! }
//! }
//!
//! impl AND {
//! // ...
//! }
//!
//! // ...
//!
//! // A short-hand `Instruction` constructor for each operation to make it easier to
//! // hand-write assembly for tests and benchmarking. As these constructors are public and
//! // accept literal values, we check that the values are within range.
//!
//! /// Adds two registers.
//! pub fn add(ra: u8, rb: u8, rc: u8) -> Instruction {
//! ADD::new(check_reg_id(ra), check_reg_id(rb), check_reg_id(rc)).into()
//! }
//!
//! /// Bitwise ANDs two registers.
//! pub fn and(ra: u8, rb: u8, rc: u8) -> Instruction {
//! AND::new(check_reg_id(ra), check_reg_id(rb), check_reg_id(rc)).into()
//! }
//!
//! // ...
//! };
//! ```
//!
//! ### Instruction Layout
//!
//! The function signatures of the `new` and `unpack` functions are derived from the instruction's
//! data layout described in the `impl_instructions!` table.
//!
//! For example, the `unpack` method for `ADD` looks like this:
//!
//! ```rust,ignore
//! // 0x10 ADD add [RegId RegId RegId]
//! pub fn unpack(self) -> (RegId, RegId, RegId)
//! ```
//!
//! While the `unpack` method for `ADDI` looks like this:
//!
//! ```rust,ignore
//! // 0x50 ADDI addi [RegId RegId Imm12]
//! pub fn unpack(self) -> (RegId, RegId, Imm12)
//! ```
//!
//! ### Shorthand Constructors
//!
//! The shorthand instruction constructors (e.g. `add`, `and`, etc) are specifically designed to
//! make it easier to handwrite assembly for tests or benchmarking. Unlike the `$OP::new`
//! constructors which require typed register ID or immediate inputs, the instruction constructors
//! allow for constructing `Instruction`s from convenient literal value inputs. E.g.
//!
//! ```rust
//! use fuel_asm::{op, Instruction};
//!
//! // A sample program to perform ecrecover
//! let program: Vec<Instruction> = vec![
//! op::move_(0x10, 0x01), // set r[0x10] := $one
//! op::slli(0x20, 0x10, 5), // set r[0x20] := `r[0x10] << 5 == 32`
//! op::slli(0x21, 0x10, 6), // set r[0x21] := `r[0x10] << 6 == 64`
//! op::aloc(0x21), // alloc `r[0x21] == 64` to the heap
//! op::addi(0x10, 0x07, 1), // set r[0x10] := `$hp + 1` (allocated heap)
//! op::move_(0x11, 0x04), // set r[0x11] := $ssp
//! op::add(0x12, 0x04, 0x20), // set r[0x12] := `$ssp + r[0x20]`
//! op::ecr(0x10, 0x11, 0x12), // recover public key in memory[r[0x10], 64]
//! op::ret(0x01), // return `1`
//! ];
//! ```
/// This macro is intentionaly private. See the module-level documentation for a thorough
/// explanation of how this macro works.
macro_rules! impl_instructions {
// Recursively declares a unique struct for each opcode.
(decl_op_struct $doc:literal $ix:literal $Op:ident $op:ident [$($field:ident)*] $($rest:tt)*) => {
#[doc = $doc]
#[derive(Clone, Copy, Eq, Hash, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct $Op(pub (super) [u8; 3]);
impl_instructions!(decl_op_struct $($rest)*);
};
(decl_op_struct) => {};
// Define the `Opcode` enum.
(decl_opcode_enum $($doc:literal $ix:literal $Op:ident $op:ident [$($field:ident)*])*) => {
/// Solely the opcode portion of an instruction represented as a single byte.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(u8)]
pub enum Opcode {
$(
#[doc = $doc]
$Op = $ix,
)*
}
};
// Define the `Instruction` enum.
(decl_instruction_enum $($doc:literal $ix:literal $Op:ident $op:ident [$($field:ident)*])*) => {
/// Representation of a single instruction for the interpreter.
///
/// The opcode is represented in the tag (variant), or may be retrieved in the form of an
/// `Opcode` byte using the `opcode` method.
///
/// The register and immediate data associated with the instruction is represented within
/// an inner unit type wrapper around the 3 remaining bytes.
#[derive(Clone, Copy, Eq, Hash, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum Instruction {
$(
#[doc = $doc]
$Op(op::$Op),
)*
}
};
// Generate a constructor based on the field layout.
(impl_op_new [RegId]) => {
/// Construct the instruction from its parts.
pub fn new(ra: RegId) -> Self {
Self(pack::bytes_from_ra(ra))
}
};
(impl_op_new [RegId RegId]) => {
/// Construct the instruction from its parts.
pub fn new(ra: RegId, rb: RegId) -> Self {
Self(pack::bytes_from_ra_rb(ra, rb))
}
};
(impl_op_new [RegId RegId RegId]) => {
/// Construct the instruction from its parts.
pub fn new(ra: RegId, rb: RegId, rc: RegId) -> Self {
Self(pack::bytes_from_ra_rb_rc(ra, rb, rc))
}
};
(impl_op_new [RegId RegId RegId RegId]) => {
/// Construct the instruction from its parts.
pub fn new(ra: RegId, rb: RegId, rc: RegId, rd: RegId) -> Self {
Self(pack::bytes_from_ra_rb_rc_rd(ra, rb, rc, rd))
}
};
(impl_op_new [RegId RegId Imm12]) => {
/// Construct the instruction from its parts.
pub fn new(ra: RegId, rb: RegId, imm: Imm12) -> Self {
Self(pack::bytes_from_ra_rb_imm12(ra, rb, imm))
}
};
(impl_op_new [RegId Imm18]) => {
/// Construct the instruction from its parts.
pub fn new(ra: RegId, imm: Imm18) -> Self {
Self(pack::bytes_from_ra_imm18(ra, imm))
}
};
(impl_op_new [Imm24]) => {
/// Construct the instruction from its parts.
pub fn new(imm: Imm24) -> Self {
Self(pack::bytes_from_imm24(imm))
}
};
(impl_op_new []) => {
/// Construct the instruction.
#[allow(clippy::new_without_default)]
pub fn new() -> Self {
Self([0; 3])
}
};
// Generate an accessor method for each field. Recurse based on layout.
(impl_op_accessors [RegId]) => {
/// Access the ID for register A.
pub fn ra(&self) -> RegId {
unpack::ra_from_bytes(self.0)
}
};
(impl_op_accessors [RegId RegId]) => {
impl_instructions!(impl_op_accessors [RegId]);
/// Access the ID for register B.
pub fn rb(&self) -> RegId {
unpack::rb_from_bytes(self.0)
}
};
(impl_op_accessors [RegId RegId RegId]) => {
impl_instructions!(impl_op_accessors [RegId RegId]);
/// Access the ID for register C.
pub fn rc(&self) -> RegId {
unpack::rc_from_bytes(self.0)
}
};
(impl_op_accessors [RegId RegId RegId RegId]) => {
impl_instructions!(impl_op_accessors [RegId RegId RegId]);
/// Access the ID for register D.
pub fn rd(&self) -> RegId {
unpack::rd_from_bytes(self.0)
}
};
(impl_op_accessors [RegId RegId Imm12]) => {
impl_instructions!(impl_op_accessors [RegId RegId]);
/// Access the 12-bit immediate value.
pub fn imm12(&self) -> Imm12 {
unpack::imm12_from_bytes(self.0)
}
};
(impl_op_accessors [RegId Imm18]) => {
impl_instructions!(impl_op_accessors [RegId]);
/// Access the 18-bit immediate value.
pub fn imm18(&self) -> Imm18 {
unpack::imm18_from_bytes(self.0)
}
};
(impl_op_accessors [Imm24]) => {
/// Access the 24-bit immediate value.
pub fn imm24(&self) -> Imm24 {
unpack::imm24_from_bytes(self.0)
}
};
(impl_op_accessors []) => {};
// Generate a method for converting the instruction into its parts.
(impl_op_unpack [RegId]) => {
/// Convert the instruction into its parts.
pub fn unpack(self) -> RegId {
unpack::ra_from_bytes(self.0)
}
};
(impl_op_unpack [RegId RegId]) => {
/// Convert the instruction into its parts.
pub fn unpack(self) -> (RegId, RegId) {
unpack::ra_rb_from_bytes(self.0)
}
};
(impl_op_unpack [RegId RegId RegId]) => {
/// Convert the instruction into its parts.
pub fn unpack(self) -> (RegId, RegId, RegId) {
unpack::ra_rb_rc_from_bytes(self.0)
}
};
(impl_op_unpack [RegId RegId RegId RegId]) => {
/// Convert the instruction into its parts.
pub fn unpack(self) -> (RegId, RegId, RegId, RegId) {
unpack::ra_rb_rc_rd_from_bytes(self.0)
}
};
(impl_op_unpack [RegId RegId Imm12]) => {
/// Convert the instruction into its parts.
pub fn unpack(self) -> (RegId, RegId, Imm12) {
unpack::ra_rb_imm12_from_bytes(self.0)
}
};
(impl_op_unpack [RegId Imm18]) => {
/// Convert the instruction into its parts.
pub fn unpack(self) -> (RegId, Imm18) {
unpack::ra_imm18_from_bytes(self.0)
}
};
(impl_op_unpack [Imm24]) => {
/// Convert the instruction into its parts.
pub fn unpack(self) -> Imm24 {
unpack::imm24_from_bytes(self.0)
}
};
(impl_op_unpack []) => {};
// Generate a shorthand free function named after the $op for constructing an `Instruction`.
(impl_op_constructor $doc:literal $Op:ident $op:ident [RegId]) => {
#[doc = $doc]
pub fn $op<A: CheckRegId>(ra: A) -> Instruction {
$Op::new(ra.check()).into()
}
};
(impl_op_constructor $doc:literal $Op:ident $op:ident [RegId RegId]) => {
#[doc = $doc]
pub fn $op<A: CheckRegId, B: CheckRegId>(ra: A, rb: B) -> Instruction {
$Op::new(ra.check(), rb.check()).into()
}
};
(impl_op_constructor $doc:literal $Op:ident $op:ident [RegId RegId RegId]) => {
#[doc = $doc]
pub fn $op<A: CheckRegId, B: CheckRegId, C: CheckRegId>(ra: A, rb: B, rc: C) -> Instruction {
$Op::new(ra.check(), rb.check(), rc.check()).into()
}
};
(impl_op_constructor $doc:literal $Op:ident $op:ident [RegId RegId RegId RegId]) => {
#[doc = $doc]
pub fn $op<A: CheckRegId, B: CheckRegId, C: CheckRegId, D: CheckRegId>(ra: A, rb: B, rc: C, rd: D) -> Instruction {
$Op::new(ra.check(), rb.check(), rc.check(), rd.check()).into()
}
};
(impl_op_constructor $doc:literal $Op:ident $op:ident [RegId RegId Imm12]) => {
#[doc = $doc]
pub fn $op<A: CheckRegId, B: CheckRegId>(ra: A, rb: B, imm: u16) -> Instruction {
$Op::new(ra.check(), rb.check(), check_imm12(imm)).into()
}
};
(impl_op_constructor $doc:literal $Op:ident $op:ident [RegId Imm18]) => {
#[doc = $doc]
pub fn $op<A: CheckRegId>(ra: A, imm: u32) -> Instruction {
$Op::new(ra.check(), check_imm18(imm)).into()
}
};
(impl_op_constructor $doc:literal $Op:ident $op:ident [Imm24]) => {
#[doc = $doc]
pub fn $op(imm: u32) -> Instruction {
$Op::new(check_imm24(imm)).into()
}
};
(impl_op_constructor $doc:literal $Op:ident $op:ident []) => {
#[doc = $doc]
pub fn $op() -> Instruction {
$Op::new().into()
}
};
// Generate a private fn for use within the `Instruction::reg_ids` implementation.
(impl_op_reg_ids [RegId]) => {
pub(super) fn reg_ids(&self) -> [Option<RegId>; 4] {
let ra = self.unpack();
[Some(ra), None, None, None]
}
};
(impl_op_reg_ids [RegId RegId]) => {
pub(super) fn reg_ids(&self) -> [Option<RegId>; 4] {
let (ra, rb) = self.unpack();
[Some(ra), Some(rb), None, None]
}
};
(impl_op_reg_ids [RegId RegId RegId]) => {
pub(super) fn reg_ids(&self) -> [Option<RegId>; 4] {
let (ra, rb, rc) = self.unpack();
[Some(ra), Some(rb), Some(rc), None]
}
};
(impl_op_reg_ids [RegId RegId RegId RegId]) => {
pub(super) fn reg_ids(&self) -> [Option<RegId>; 4] {
let (ra, rb, rc, rd) = self.unpack();
[Some(ra), Some(rb), Some(rc), Some(rd)]
}
};
(impl_op_reg_ids [RegId RegId Imm12]) => {
pub(super) fn reg_ids(&self) -> [Option<RegId>; 4] {
let (ra, rb, _) = self.unpack();
[Some(ra), Some(rb), None, None]
}
};
(impl_op_reg_ids [RegId Imm18]) => {
pub(super) fn reg_ids(&self) -> [Option<RegId>; 4] {
let (ra, _) = self.unpack();
[Some(ra), None, None, None]
}
};
(impl_op_reg_ids [$($rest:tt)*]) => {
pub(super) fn reg_ids(&self) -> [Option<RegId>; 4] {
[None; 4]
}
};
// Debug implementations for each instruction.
(impl_op_debug_fmt $Op:ident [RegId]) => {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
let ra = self.unpack();
f.debug_struct(stringify!($Op))
.field("ra", &u8::from(ra))
.finish()
}
};
(impl_op_debug_fmt $Op:ident [RegId RegId]) => {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
let (ra, rb) = self.unpack();
f.debug_struct(stringify!($Op))
.field("ra", &u8::from(ra))
.field("rb", &u8::from(rb))
.finish()
}
};
(impl_op_debug_fmt $Op:ident [RegId RegId RegId]) => {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
let (ra, rb, rc) = self.unpack();
f.debug_struct(stringify!($Op))
.field("ra", &u8::from(ra))
.field("rb", &u8::from(rb))
.field("rc", &u8::from(rc))
.finish()
}
};
(impl_op_debug_fmt $Op:ident [RegId RegId RegId RegId]) => {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
let (ra, rb, rc, rd) = self.unpack();
f.debug_struct(stringify!($Op))
.field("ra", &u8::from(ra))
.field("rb", &u8::from(rb))
.field("rc", &u8::from(rc))
.field("rd", &u8::from(rd))
.finish()
}
};
(impl_op_debug_fmt $Op:ident [RegId RegId Imm12]) => {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
let (ra, rb, imm) = self.unpack();
f.debug_struct(stringify!($Op))
.field("ra", &u8::from(ra))
.field("rb", &u8::from(rb))
.field("imm", &u16::from(imm))
.finish()
}
};
(impl_op_debug_fmt $Op:ident [RegId Imm18]) => {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
let (ra, imm) = self.unpack();
f.debug_struct(stringify!($Op))
.field("ra", &u8::from(ra))
.field("imm", &u32::from(imm))
.finish()
}
};
(impl_op_debug_fmt $Op:ident [Imm24]) => {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
let imm = self.unpack();
f.debug_struct(stringify!($Op))
.field("imm", &u32::from(imm))
.finish()
}
};
(impl_op_debug_fmt $Op:ident []) => {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct(stringify!($Op))
.finish()
}
};
// Implement constructors and accessors for register and immediate values.
(impl_op $doc:literal $ix:literal $Op:ident $op:ident [$($field:ident)*] $($rest:tt)*) => {
impl $Op {
/// The associated 8-bit Opcode value.
pub const OPCODE: Opcode = Opcode::$Op;
impl_instructions!(impl_op_new [$($field)*]);
impl_instructions!(impl_op_accessors [$($field)*]);
impl_instructions!(impl_op_unpack [$($field)*]);
impl_instructions!(impl_op_reg_ids [$($field)*]);
}
impl_instructions!(impl_op_constructor $doc $Op $op [$($field)*]);
impl From<$Op> for [u8; 3] {
fn from($Op(arr): $Op) -> Self {
arr
}
}
impl From<$Op> for [u8; 4] {
fn from($Op([a, b, c]): $Op) -> Self {
[$Op::OPCODE as u8, a, b, c]
}
}
impl From<$Op> for u32 {
fn from(op: $Op) -> Self {
u32::from_be_bytes(op.into())
}
}
impl From<$Op> for Instruction {
fn from(op: $Op) -> Self {
Instruction::$Op(op)
}
}
impl core::fmt::Debug for $Op {
impl_instructions!(impl_op_debug_fmt $Op [$($field)*]);
}
impl_instructions!(impl_op $($rest)*);
};
(impl_op) => {};
// Implement `TryFrom<u8>` for `Opcode`.
(impl_opcode $($doc:literal $ix:literal $Op:ident $op:ident [$($field:ident)*])*) => {
impl core::convert::TryFrom<u8> for Opcode {
type Error = InvalidOpcode;
fn try_from(u: u8) -> Result<Self, Self::Error> {
match u {
$(
$ix => Ok(Opcode::$Op),
)*
_ => Err(InvalidOpcode),
}
}
}
};
// Implement accessors for register and immediate values.
(impl_instruction $($doc:literal $ix:literal $Op:ident $op:ident [$($field:ident)*])*) => {
impl Instruction {
/// This instruction's opcode.
pub fn opcode(&self) -> Opcode {
match self {
$(
Self::$Op(_) => Opcode::$Op,
)*
}
}
/// Unpacks all register IDs into a slice of options.
pub fn reg_ids(&self) -> [Option<RegId>; 4] {
match self {
$(
Self::$Op(op) => op.reg_ids(),
)*
}
}
}
impl From<Instruction> for [u8; 4] {
fn from(inst: Instruction) -> Self {
match inst {
$(
Instruction::$Op(op) => op.into(),
)*
}
}
}
impl core::convert::TryFrom<[u8; 4]> for Instruction {
type Error = InvalidOpcode;
fn try_from([op, a, b, c]: [u8; 4]) -> Result<Self, Self::Error> {
match Opcode::try_from(op)? {
$(
Opcode::$Op => Ok(Self::$Op(op::$Op([a, b, c]))),
)*
}
}
}
impl core::fmt::Debug for Instruction {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
match self {
$(
Self::$Op(op) => op.fmt(f),
)*
}
}
}
};
// Entrypoint to the macro, generates structs, methods, opcode enum and instruction enum
// separately.
($($tts:tt)*) => {
mod _op {
use super::*;
impl_instructions!(decl_op_struct $($tts)*);
impl_instructions!(impl_op $($tts)*);
}
impl_instructions!(decl_opcode_enum $($tts)*);
impl_instructions!(decl_instruction_enum $($tts)*);
impl_instructions!(impl_opcode $($tts)*);
impl_instructions!(impl_instruction $($tts)*);
};
}