1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
//! # The `impl_instructions!` macro
//!
//! The heart of this crate's implementation is the private `impl_instructions!` macro. This macro
//! is used to generate the `Instruction` and `Opcode` types along with their implementations.
//!
//! The intention is to allow for having a single source of truth from which each of the
//! instruction-related types and implementations are derived.
//!
//! Its usage looks like this:
//!
//! ```rust,ignore
//! impl_instructions! {
//!     "Adds two registers."
//!     0x10 ADD add [RegId RegId RegId]
//!     "Bitwise ANDs two registers."
//!     0x11 AND and [RegId RegId RegId]
//!     // ...
//! }
//! ```
//!
//! Each instruction's row includes:
//!
//! - A short docstring.
//! - The Opcode byte value.
//! - An uppercase identifier (for generating variants and types).
//! - A lowercase identifier (for generating the shorthand instruction constructor).
//! - The instruction layout (for the `new` and `unpack` functions).
//!
//! The following sections describe each of the items that are derived from the
//! `impl_instructions!` table in more detail.
//!
//! ## The `Opcode` enum
//!
//! Represents the bytecode portion of an instruction.
//!
//! ```rust,ignore
//! /// Solely the opcode portion of an instruction represented as a single byte.
//! #[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
//! #[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
//! #[repr(u8)]
//! pub enum Opcode {
//!     /// Adds two registers.
//!     ADD = 0x10,
//!     /// Bitwise ANDs two registers.
//!     AND = 0x11,
//!     // ...
//! }
//! ```
//!
//! A `TryFrom<u8>` implementation is also provided, producing an `Err(InvalidOpcode)` in the case
//! that the byte represents a reserved or undefined value.
//!
//! ```rust
//! # use fuel_asm::{InvalidOpcode, Opcode};
//! assert_eq!(Opcode::try_from(0x10), Ok(Opcode::ADD));
//! assert_eq!(Opcode::try_from(0x11), Ok(Opcode::AND));
//! assert_eq!(Opcode::try_from(0), Err(InvalidOpcode));
//! ```
//!
//! ## The `Instruction` enum
//!
//! Represents a single, full instruction, discriminated by its `Opcode`.
//!
//! ```rust,ignore
//! /// Representation of a single instruction for the interpreter.
//! ///
//! /// The opcode is represented in the tag (variant), or may be retrieved in the form of an
//! /// `Opcode` byte using the `opcode` method.
//! ///
//! /// The register and immediate data associated with the instruction is represented within
//! /// an inner unit type wrapper around the 3 remaining bytes.
//! #[derive(Clone, Copy, Eq, Hash, PartialEq)]
//! #[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
//! pub enum Instruction {
//!     /// Adds two registers.
//!     ADD(op::ADD),
//!     /// Bitwise ANDs two registers.
//!     AND(op::AND),
//!     // ...
//! }
//! ```
//!
//! The `From<Instruction> for u32` (aka `RawInstruction`) and `TryFrom<u32> for Instruction`
//! implementations can be found in the crate root.
//!
//! ## A unique unit type per operation
//!
//! In order to reduce the likelihood of misusing unrelated register IDs or immediate values, we
//! generate a unique unit type for each type of operation (i.e instruction variant) and guard
//! access to the relevant register IDs and immediate values behind each type's unique methods.
//!
//! These unique operation types are generated as follows within a dedicated `op` module:
//!
//! ```rust,ignore
//! pub mod op {
//!     //! Definitions and implementations for each unique instruction type, one for each
//!     //! unique `Opcode` variant.
//!
//!     // A unique type for each operation.
//!
//!     /// Adds two registers.
//!     pub struct ADD([u8; 3]);
//!
//!     /// Bitwise ANDs two registers.
//!     pub struct AND([u8; 3]);
//!
//!     // ...
//!
//!     // An implementation for each unique type.
//!
//!     impl ADD {
//!         pub const OPCODE: Opcode = Opcode::ADD;
//!
//!         /// Construct the instruction from its parts.
//!         pub fn new(ra: RegId, rb: RegId, rc: RegId) -> Self {
//!             Self(pack::bytes_from_ra_rb_rc(ra, rb, rc))
//!         }
//!
//!         /// Convert the instruction into its parts.
//!         pub fn unpack(self) -> (RegId, RegId, RegId) {
//!             unpack::ra_rb_rc_from_bytes(self.0)
//!         }
//!     }
//!
//!     impl AND {
//!         // ...
//!     }
//!
//!     // ...
//!
//!     // A short-hand `Instruction` constructor for each operation to make it easier to
//!     // hand-write assembly for tests and benchmarking. As these constructors are public and
//!     // accept literal values, we check that the values are within range.
//!
//!     /// Adds two registers.
//!     pub fn add(ra: u8, rb: u8, rc: u8) -> Instruction {
//!         ADD::new(check_reg_id(ra), check_reg_id(rb), check_reg_id(rc)).into()
//!     }
//!
//!     /// Bitwise ANDs two registers.
//!     pub fn and(ra: u8, rb: u8, rc: u8) -> Instruction {
//!         AND::new(check_reg_id(ra), check_reg_id(rb), check_reg_id(rc)).into()
//!     }
//!
//!     // ...
//! };
//! ```
//!
//! ### Instruction Layout
//!
//! The function signatures of the `new` and `unpack` functions are derived from the instruction's
//! data layout described in the `impl_instructions!` table.
//!
//! For example, the `unpack` method for `ADD` looks like this:
//!
//! ```rust,ignore
//! // 0x10 ADD add [RegId RegId RegId]
//! pub fn unpack(self) -> (RegId, RegId, RegId)
//! ```
//!
//! While the `unpack` method for `ADDI` looks like this:
//!
//! ```rust,ignore
//! // 0x50 ADDI addi [RegId RegId Imm12]
//! pub fn unpack(self) -> (RegId, RegId, Imm12)
//! ```
//!
//! ### Shorthand Constructors
//!
//! The shorthand instruction constructors (e.g. `add`, `and`, etc) are specifically designed to
//! make it easier to handwrite assembly for tests or benchmarking. Unlike the `$OP::new`
//! constructors which require typed register ID or immediate inputs, the instruction constructors
//! allow for constructing `Instruction`s from convenient literal value inputs. E.g.
//!
//! ```rust
//! use fuel_asm::{op, Instruction};
//!
//! // A sample program to perform ecrecover
//! let program: Vec<Instruction> = vec![
//!     op::move_(0x10, 0x01),     // set r[0x10] := $one
//!     op::slli(0x20, 0x10, 5),   // set r[0x20] := `r[0x10] << 5 == 32`
//!     op::slli(0x21, 0x10, 6),   // set r[0x21] := `r[0x10] << 6 == 64`
//!     op::aloc(0x21),            // alloc `r[0x21] == 64` to the heap
//!     op::addi(0x10, 0x07, 1),   // set r[0x10] := `$hp + 1` (allocated heap)
//!     op::move_(0x11, 0x04),     // set r[0x11] := $ssp
//!     op::add(0x12, 0x04, 0x20), // set r[0x12] := `$ssp + r[0x20]`
//!     op::ecr(0x10, 0x11, 0x12), // recover public key in memory[r[0x10], 64]
//!     op::ret(0x01),             // return `1`
//! ];
//! ```

/// This macro is intentionaly private. See the module-level documentation for a thorough
/// explanation of how this macro works.
macro_rules! impl_instructions {
    // Recursively declares a unique struct for each opcode.
    (decl_op_struct $doc:literal $ix:literal $Op:ident $op:ident [$($field:ident)*] $($rest:tt)*) => {
        #[doc = $doc]
        #[derive(Clone, Copy, Eq, Hash, PartialEq)]
        #[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
        pub struct $Op(pub (super) [u8; 3]);
        impl_instructions!(decl_op_struct $($rest)*);
    };
    (decl_op_struct) => {};

    // Define the `Opcode` enum.
    (decl_opcode_enum $($doc:literal $ix:literal $Op:ident $op:ident [$($field:ident)*])*) => {
        /// Solely the opcode portion of an instruction represented as a single byte.
        #[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
        #[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
        #[repr(u8)]
        pub enum Opcode {
            $(
                #[doc = $doc]
                $Op = $ix,
            )*
        }
    };

    // Define the `Instruction` enum.
    (decl_instruction_enum $($doc:literal $ix:literal $Op:ident $op:ident [$($field:ident)*])*) => {
        /// Representation of a single instruction for the interpreter.
        ///
        /// The opcode is represented in the tag (variant), or may be retrieved in the form of an
        /// `Opcode` byte using the `opcode` method.
        ///
        /// The register and immediate data associated with the instruction is represented within
        /// an inner unit type wrapper around the 3 remaining bytes.
        #[derive(Clone, Copy, Eq, Hash, PartialEq)]
        #[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
        pub enum Instruction {
            $(
                #[doc = $doc]
                $Op(op::$Op),
            )*
        }
    };

    // Generate a constructor based on the field layout.
    (impl_op_new [RegId]) => {
        /// Construct the instruction from its parts.
        pub fn new(ra: RegId) -> Self {
            Self(pack::bytes_from_ra(ra))
        }
    };
    (impl_op_new [RegId RegId]) => {
        /// Construct the instruction from its parts.
        pub fn new(ra: RegId, rb: RegId) -> Self {
            Self(pack::bytes_from_ra_rb(ra, rb))
        }
    };
    (impl_op_new [RegId RegId RegId]) => {
        /// Construct the instruction from its parts.
        pub fn new(ra: RegId, rb: RegId, rc: RegId) -> Self {
            Self(pack::bytes_from_ra_rb_rc(ra, rb, rc))
        }
    };
    (impl_op_new [RegId RegId RegId RegId]) => {
        /// Construct the instruction from its parts.
        pub fn new(ra: RegId, rb: RegId, rc: RegId, rd: RegId) -> Self {
            Self(pack::bytes_from_ra_rb_rc_rd(ra, rb, rc, rd))
        }
    };
    (impl_op_new [RegId RegId RegId Imm06]) => {
        /// Construct the instruction from its parts.
        pub fn new(ra: RegId, rb: RegId, rc: RegId, imm: Imm06) -> Self {
            Self(pack::bytes_from_ra_rb_rc_imm06(ra, rb, rc, imm))
        }
    };
    (impl_op_new [RegId RegId Imm12]) => {
        /// Construct the instruction from its parts.
        pub fn new(ra: RegId, rb: RegId, imm: Imm12) -> Self {
            Self(pack::bytes_from_ra_rb_imm12(ra, rb, imm))
        }
    };
    (impl_op_new [RegId Imm18]) => {
        /// Construct the instruction from its parts.
        pub fn new(ra: RegId, imm: Imm18) -> Self {
            Self(pack::bytes_from_ra_imm18(ra, imm))
        }
    };
    (impl_op_new [Imm24]) => {
        /// Construct the instruction from its parts.
        pub fn new(imm: Imm24) -> Self {
            Self(pack::bytes_from_imm24(imm))
        }
    };
    (impl_op_new []) => {
        /// Construct the instruction.
        #[allow(clippy::new_without_default)]
        pub fn new() -> Self {
            Self([0; 3])
        }
    };

    // Recursively generate a test constructor for each opcode
    (impl_opcode_test_construct $doc:literal $ix:literal $Op:ident $op:ident [$($field:ident)*] $($rest:tt)*) => {
        #[cfg(test)]
        impl crate::_op::$Op {
            impl_instructions!(impl_opcode_test_construct_fn [$($field)*]);
        }
        impl_instructions!(impl_opcode_test_construct $($rest)*);
    };
    (impl_opcode_test_construct) => {};

    (impl_opcode_test_construct_fn [RegId]) => {
        /// Construct the instruction from all possible raw fields, ignoring inapplicable ones.
        pub fn test_construct(ra: RegId, _rb: RegId, _rc: RegId, _rd: RegId, _imm: u32) -> Self {
            Self(pack::bytes_from_ra(ra))
        }
    };
    (impl_opcode_test_construct_fn [RegId RegId]) => {
        /// Construct the instruction from all possible raw fields, ignoring inapplicable ones.
        pub fn test_construct(ra: RegId, rb: RegId, _rc: RegId, _rd: RegId, _imm: u32) -> Self {
            Self(pack::bytes_from_ra_rb(ra, rb))
        }
    };
    (impl_opcode_test_construct_fn [RegId RegId RegId]) => {
        /// Construct the instruction from all possible raw fields, ignoring inapplicable ones.
        pub fn test_construct(ra: RegId, rb: RegId, rc: RegId, _rd: RegId, _imm: u32) -> Self {
            Self(pack::bytes_from_ra_rb_rc(ra, rb, rc))
        }
    };
    (impl_opcode_test_construct_fn [RegId RegId RegId RegId]) => {
        /// Construct the instruction from all possible raw fields, ignoring inapplicable ones.
        pub fn test_construct(ra: RegId, rb: RegId, rc: RegId, rd: RegId, _imm: u32) -> Self {
            Self(pack::bytes_from_ra_rb_rc_rd(ra, rb, rc, rd))
        }
    };
    (impl_opcode_test_construct_fn [RegId RegId RegId Imm06]) => {
        /// Construct the instruction from all possible raw fields, ignoring inapplicable ones.
        pub fn test_construct(ra: RegId, rb: RegId, rc: RegId, _rd: RegId, imm: u32) -> Self {
            Self(pack::bytes_from_ra_rb_rc_imm06(ra, rb, rc, Imm06::from(imm as u8)))
        }
    };
    (impl_opcode_test_construct_fn [RegId RegId Imm12]) => {
        /// Construct the instruction from all possible raw fields, ignoring inapplicable ones.
        pub fn test_construct(ra: RegId, rb: RegId, _rc: RegId, _rd: RegId, imm: u32) -> Self {
            Self(pack::bytes_from_ra_rb_imm12(ra, rb, Imm12::from(imm as u16)))
        }
    };
    (impl_opcode_test_construct_fn [RegId Imm18]) => {
        /// Construct the instruction from all possible raw fields, ignoring inapplicable ones.
        pub fn test_construct(ra: RegId, _rb: RegId, _rc: RegId, _rd: RegId, imm: u32) -> Self {
            Self(pack::bytes_from_ra_imm18(ra, Imm18::from(imm)))
        }
    };
    (impl_opcode_test_construct_fn [Imm24]) => {
        /// Construct the instruction from all possible raw fields, ignoring inapplicable ones.
        pub fn test_construct(_ra: RegId, _rb: RegId, _rc: RegId, _rd: RegId, imm: u32) -> Self {
            Self(pack::bytes_from_imm24(Imm24::from(imm)))
        }
    };
    (impl_opcode_test_construct_fn []) => {
        /// Construct the instruction from all possible raw fields, ignoring inapplicable ones.
        #[allow(clippy::new_without_default)]
        pub fn test_construct(_ra: RegId, _rb: RegId, _rc: RegId, _rd: RegId, _imm: u32) -> Self {
            Self([0; 3])
        }
    };

    // Generate an accessor method for each field. Recurse based on layout.
    (impl_op_accessors [RegId]) => {
        /// Access the ID for register A.
        pub fn ra(&self) -> RegId {
            unpack::ra_from_bytes(self.0)
        }
    };
    (impl_op_accessors [RegId RegId]) => {
        impl_instructions!(impl_op_accessors [RegId]);
        /// Access the ID for register B.
        pub fn rb(&self) -> RegId {
            unpack::rb_from_bytes(self.0)
        }
    };
    (impl_op_accessors [RegId RegId RegId]) => {
        impl_instructions!(impl_op_accessors [RegId RegId]);
        /// Access the ID for register C.
        pub fn rc(&self) -> RegId {
            unpack::rc_from_bytes(self.0)
        }
    };
    (impl_op_accessors [RegId RegId RegId RegId]) => {
        impl_instructions!(impl_op_accessors [RegId RegId RegId]);
        /// Access the ID for register D.
        pub fn rd(&self) -> RegId {
            unpack::rd_from_bytes(self.0)
        }
    };
    (impl_op_accessors [RegId RegId RegId Imm06]) => {
        impl_instructions!(impl_op_accessors [RegId RegId RegId]);
        /// Access the 6-bit immediate value.
        pub fn imm06(&self) -> Imm06 {
            unpack::imm06_from_bytes(self.0)
        }
    };
    (impl_op_accessors [RegId RegId Imm12]) => {
        impl_instructions!(impl_op_accessors [RegId RegId]);
        /// Access the 12-bit immediate value.
        pub fn imm12(&self) -> Imm12 {
            unpack::imm12_from_bytes(self.0)
        }
    };
    (impl_op_accessors [RegId Imm18]) => {
        impl_instructions!(impl_op_accessors [RegId]);
        /// Access the 18-bit immediate value.
        pub fn imm18(&self) -> Imm18 {
            unpack::imm18_from_bytes(self.0)
        }
    };
    (impl_op_accessors [Imm24]) => {
        /// Access the 24-bit immediate value.
        pub fn imm24(&self) -> Imm24 {
            unpack::imm24_from_bytes(self.0)
        }
    };
    (impl_op_accessors []) => {};

    // Generate a method for converting the instruction into its parts.
    (impl_op_unpack [RegId]) => {
        /// Convert the instruction into its parts.
        pub fn unpack(self) -> RegId {
            unpack::ra_from_bytes(self.0)
        }
    };
    (impl_op_unpack [RegId RegId]) => {
        /// Convert the instruction into its parts.
        pub fn unpack(self) -> (RegId, RegId) {
            unpack::ra_rb_from_bytes(self.0)
        }
    };
    (impl_op_unpack [RegId RegId RegId]) => {
        /// Convert the instruction into its parts.
        pub fn unpack(self) -> (RegId, RegId, RegId) {
            unpack::ra_rb_rc_from_bytes(self.0)
        }
    };
    (impl_op_unpack [RegId RegId RegId RegId]) => {
        /// Convert the instruction into its parts.
        pub fn unpack(self) -> (RegId, RegId, RegId, RegId) {
            unpack::ra_rb_rc_rd_from_bytes(self.0)
        }
    };
    (impl_op_unpack [RegId RegId RegId Imm06]) => {
        /// Convert the instruction into its parts.
        pub fn unpack(self) -> (RegId, RegId, RegId, Imm06) {
            unpack::ra_rb_rc_imm06_from_bytes(self.0)
        }
    };
    (impl_op_unpack [RegId RegId Imm12]) => {
        /// Convert the instruction into its parts.
        pub fn unpack(self) -> (RegId, RegId, Imm12) {
            unpack::ra_rb_imm12_from_bytes(self.0)
        }
    };
    (impl_op_unpack [RegId Imm18]) => {
        /// Convert the instruction into its parts.
        pub fn unpack(self) -> (RegId, Imm18) {
            unpack::ra_imm18_from_bytes(self.0)
        }
    };
    (impl_op_unpack [Imm24]) => {
        /// Convert the instruction into its parts.
        pub fn unpack(self) -> Imm24 {
            unpack::imm24_from_bytes(self.0)
        }
    };
    (impl_op_unpack []) => {};

    // Generate a shorthand free function named after the $op for constructing an `Instruction`.
    (impl_op_constructor $doc:literal $Op:ident $op:ident [RegId]) => {
        #[doc = $doc]
        pub fn $op<A: CheckRegId>(ra: A) -> Instruction {
            $Op::new(ra.check()).into()
        }
    };
    (impl_op_constructor $doc:literal $Op:ident $op:ident [RegId RegId]) => {
        #[doc = $doc]
        pub fn $op<A: CheckRegId, B: CheckRegId>(ra: A, rb: B) -> Instruction {
            $Op::new(ra.check(), rb.check()).into()
        }
    };
    (impl_op_constructor $doc:literal $Op:ident $op:ident [RegId RegId RegId]) => {
        #[doc = $doc]
        pub fn $op<A: CheckRegId, B: CheckRegId, C: CheckRegId>(ra: A, rb: B, rc: C) -> Instruction {
            $Op::new(ra.check(), rb.check(), rc.check()).into()
        }
    };
    (impl_op_constructor $doc:literal $Op:ident $op:ident [RegId RegId RegId RegId]) => {
        #[doc = $doc]
        pub fn $op<A: CheckRegId, B: CheckRegId, C: CheckRegId, D: CheckRegId>(ra: A, rb: B, rc: C, rd: D) -> Instruction {
            $Op::new(ra.check(), rb.check(), rc.check(), rd.check()).into()
        }
    };
    (impl_op_constructor $doc:literal $Op:ident $op:ident [RegId RegId RegId Imm06]) => {
        #[doc = $doc]
        pub fn $op<A: CheckRegId, B: CheckRegId, C: CheckRegId>(ra: A, rb: B, rc: C, imm: u8) -> Instruction {
            $Op::new(ra.check(), rb.check(), rc.check(), check_imm06(imm)).into()
        }
    };
    (impl_op_constructor $doc:literal $Op:ident $op:ident [RegId RegId Imm12]) => {
        #[doc = $doc]
        pub fn $op<A: CheckRegId, B: CheckRegId>(ra: A, rb: B, imm: u16) -> Instruction {
            $Op::new(ra.check(), rb.check(), check_imm12(imm)).into()
        }
    };
    (impl_op_constructor $doc:literal $Op:ident $op:ident [RegId Imm18]) => {
        #[doc = $doc]
        pub fn $op<A: CheckRegId>(ra: A, imm: u32) -> Instruction {
            $Op::new(ra.check(), check_imm18(imm)).into()
        }
    };
    (impl_op_constructor $doc:literal $Op:ident $op:ident [Imm24]) => {
        #[doc = $doc]
        pub fn $op(imm: u32) -> Instruction {
            $Op::new(check_imm24(imm)).into()
        }
    };
    (impl_op_constructor $doc:literal $Op:ident $op:ident []) => {
        #[doc = $doc]
        pub fn $op() -> Instruction {
            $Op::new().into()
        }
    };

    // Generate a private fn for use within the `Instruction::reg_ids` implementation.
    (impl_op_reg_ids [RegId]) => {
        pub(super) fn reg_ids(&self) -> [Option<RegId>; 4] {
            let ra = self.unpack();
            [Some(ra), None, None, None]
        }
    };
    (impl_op_reg_ids [RegId RegId]) => {
        pub(super) fn reg_ids(&self) -> [Option<RegId>; 4] {
            let (ra, rb) = self.unpack();
            [Some(ra), Some(rb), None, None]
        }
    };
    (impl_op_reg_ids [RegId RegId RegId]) => {
        pub(super) fn reg_ids(&self) -> [Option<RegId>; 4] {
            let (ra, rb, rc) = self.unpack();
            [Some(ra), Some(rb), Some(rc), None]
        }
    };
    (impl_op_reg_ids [RegId RegId RegId RegId]) => {
        pub(super) fn reg_ids(&self) -> [Option<RegId>; 4] {
            let (ra, rb, rc, rd) = self.unpack();
            [Some(ra), Some(rb), Some(rc), Some(rd)]
        }
    };
    (impl_op_reg_ids [RegId RegId RegId Imm06]) => {
        pub(super) fn reg_ids(&self) -> [Option<RegId>; 4] {
            let (ra, rb, rc, _) = self.unpack();
            [Some(ra), Some(rb), Some(rc), None]
        }
    };
    (impl_op_reg_ids [RegId RegId Imm12]) => {
        pub(super) fn reg_ids(&self) -> [Option<RegId>; 4] {
            let (ra, rb, _) = self.unpack();
            [Some(ra), Some(rb), None, None]
        }
    };
    (impl_op_reg_ids [RegId Imm18]) => {
        pub(super) fn reg_ids(&self) -> [Option<RegId>; 4] {
            let (ra, _) = self.unpack();
            [Some(ra), None, None, None]
        }
    };
    (impl_op_reg_ids [$($rest:tt)*]) => {
        pub(super) fn reg_ids(&self) -> [Option<RegId>; 4] {
            [None; 4]
        }
    };

    // Debug implementations for each instruction.
    (impl_op_debug_fmt $Op:ident [RegId]) => {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            let ra = self.unpack();
            f.debug_struct(stringify!($Op))
                .field("ra", &u8::from(ra))
                .finish()
        }
    };
    (impl_op_debug_fmt $Op:ident [RegId RegId]) => {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            let (ra, rb) = self.unpack();
            f.debug_struct(stringify!($Op))
                .field("ra", &u8::from(ra))
                .field("rb", &u8::from(rb))
                .finish()
        }
    };
    (impl_op_debug_fmt $Op:ident [RegId RegId RegId]) => {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            let (ra, rb, rc) = self.unpack();
            f.debug_struct(stringify!($Op))
                .field("ra", &u8::from(ra))
                .field("rb", &u8::from(rb))
                .field("rc", &u8::from(rc))
                .finish()
        }
    };
    (impl_op_debug_fmt $Op:ident [RegId RegId RegId RegId]) => {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            let (ra, rb, rc, rd) = self.unpack();
            f.debug_struct(stringify!($Op))
                .field("ra", &u8::from(ra))
                .field("rb", &u8::from(rb))
                .field("rc", &u8::from(rc))
                .field("rd", &u8::from(rd))
                .finish()
        }
    };
    (impl_op_debug_fmt $Op:ident [RegId RegId RegId Imm06]) => {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            let (ra, rb, rc, imm) = self.unpack();
            f.debug_struct(stringify!($Op))
                .field("ra", &u8::from(ra))
                .field("rb", &u8::from(rb))
                .field("rc", &u8::from(rc))
                .field("imm", &u8::from(imm))
                .finish()
        }
    };
    (impl_op_debug_fmt $Op:ident [RegId RegId Imm12]) => {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            let (ra, rb, imm) = self.unpack();
            f.debug_struct(stringify!($Op))
                .field("ra", &u8::from(ra))
                .field("rb", &u8::from(rb))
                .field("imm", &u16::from(imm))
                .finish()
        }
    };
    (impl_op_debug_fmt $Op:ident [RegId Imm18]) => {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            let (ra, imm) = self.unpack();
            f.debug_struct(stringify!($Op))
                .field("ra", &u8::from(ra))
                .field("imm", &u32::from(imm))
                .finish()
        }
    };
    (impl_op_debug_fmt $Op:ident [Imm24]) => {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            let imm = self.unpack();
            f.debug_struct(stringify!($Op))
                .field("imm", &u32::from(imm))
                .finish()
        }
    };
    (impl_op_debug_fmt $Op:ident []) => {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct(stringify!($Op))
                .finish()
        }
    };

    // Implement constructors and accessors for register and immediate values.
    (impl_op $doc:literal $ix:literal $Op:ident $op:ident [$($field:ident)*] $($rest:tt)*) => {
        impl $Op {
            /// The associated 8-bit Opcode value.
            pub const OPCODE: Opcode = Opcode::$Op;

            impl_instructions!(impl_op_new [$($field)*]);
            impl_instructions!(impl_op_accessors [$($field)*]);
            impl_instructions!(impl_op_unpack [$($field)*]);
            impl_instructions!(impl_op_reg_ids [$($field)*]);
        }

        impl_instructions!(impl_op_constructor $doc $Op $op [$($field)*]);

        impl From<$Op> for [u8; 3] {
            fn from($Op(arr): $Op) -> Self {
                arr
            }
        }

        impl From<$Op> for [u8; 4] {
            fn from($Op([a, b, c]): $Op) -> Self {
                [$Op::OPCODE as u8, a, b, c]
            }
        }

        impl From<$Op> for u32 {
            fn from(op: $Op) -> Self {
                u32::from_be_bytes(op.into())
            }
        }

        impl From<$Op> for Instruction {
            fn from(op: $Op) -> Self {
                Instruction::$Op(op)
            }
        }

        impl core::fmt::Debug for $Op {
            impl_instructions!(impl_op_debug_fmt $Op [$($field)*]);
        }

        impl_instructions!(impl_op $($rest)*);
    };
    (impl_op) => {};

    // Implement functions for all opcode variants
    (impl_opcode $($doc:literal $ix:literal $Op:ident $op:ident [$($field:ident)*])*) => {
        impl core::convert::TryFrom<u8> for Opcode {
            type Error = InvalidOpcode;
            fn try_from(u: u8) -> Result<Self, Self::Error> {
                match u {
                    $(
                        $ix => Ok(Opcode::$Op),
                    )*
                    _ => Err(InvalidOpcode),
                }
            }
        }

        impl Opcode {
            /// Construct the instruction from all possible raw fields, ignoring inapplicable ones.
            #[cfg(test)]
            pub fn test_construct(self, ra: RegId, rb: RegId, rc: RegId, rd: RegId, imm: u32) -> Instruction {
                match self {
                    $(
                        Self::$Op => Instruction::$Op(crate::_op::$Op::test_construct(ra, rb, rc, rd, imm)),
                    )*
                }
            }
        }
    };

    // Implement accessors for register and immediate values.
    (impl_instruction $($doc:literal $ix:literal $Op:ident $op:ident [$($field:ident)*])*) => {
        impl Instruction {
            /// This instruction's opcode.
            pub fn opcode(&self) -> Opcode {
                match self {
                    $(
                        Self::$Op(_) => Opcode::$Op,
                    )*
                }
            }

            /// Unpacks all register IDs into a slice of options.
            pub fn reg_ids(&self) -> [Option<RegId>; 4] {
                match self {
                    $(
                        Self::$Op(op) => op.reg_ids(),
                    )*
                }
            }
        }

        impl From<Instruction> for [u8; 4] {
            fn from(inst: Instruction) -> Self {
                match inst {
                    $(
                        Instruction::$Op(op) => op.into(),
                    )*
                }
            }
        }

        impl core::convert::TryFrom<[u8; 4]> for Instruction {
            type Error = InvalidOpcode;
            fn try_from([op, a, b, c]: [u8; 4]) -> Result<Self, Self::Error> {
                match Opcode::try_from(op)? {
                    $(
                        Opcode::$Op => Ok(Self::$Op(op::$Op([a, b, c]))),
                    )*
                }
            }
        }

        impl core::fmt::Debug for Instruction {
            fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
                match self {
                    $(
                        Self::$Op(op) => op.fmt(f),
                    )*
                }
            }
        }
    };

    // Entrypoint to the macro, generates structs, methods, opcode enum and instruction enum
    // separately.
    ($($tts:tt)*) => {
        mod _op {
            use super::*;
            impl_instructions!(decl_op_struct $($tts)*);
            impl_instructions!(impl_op $($tts)*);
        }
        impl_instructions!(decl_opcode_enum $($tts)*);
        impl_instructions!(decl_instruction_enum $($tts)*);
        impl_instructions!(impl_opcode $($tts)*);
        impl_instructions!(impl_instruction $($tts)*);
        impl_instructions!(impl_opcode_test_construct $($tts)*);
    };
}