1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
use crate::Hasher;

use fuel_types::{Bytes32, Bytes64};

use core::fmt;
use core::ops::Deref;

/// Asymmetric public key
#[derive(Default, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(transparent)]
pub struct PublicKey(Bytes64);

impl PublicKey {
    /// Memory length of the type
    pub const LEN: usize = Bytes64::LEN;

    /// Copy-free reference cast
    ///
    /// # Safety
    ///
    /// This function will not panic if the length of the slice is smaller than
    /// `Self::LEN`. Instead, it will cause undefined behavior and read random
    /// disowned bytes.
    ///
    /// There is no guarantee the provided bytes will fit the curve.
    pub unsafe fn as_ref_unchecked(bytes: &[u8]) -> &Self {
        // The interpreter will frequently make references to keys and values using
        // logically checked slices.
        //
        // This function will save unnecessary copy to owned slices for the interpreter
        // access
        &*(bytes.as_ptr() as *const Self)
    }

    /// Add a conversion from arbitrary slices into owned
    ///
    /// # Safety
    ///
    /// There is no guarantee the provided bytes will fit the curve. The curve
    /// security can be checked with [`PublicKey::is_in_curve`].
    pub unsafe fn from_bytes_unchecked(bytes: [u8; Self::LEN]) -> Self {
        Self(bytes.into())
    }

    /// Add a conversion from arbitrary slices into owned
    ///
    /// # Safety
    ///
    /// This function will not panic if the length of the slice is smaller than
    /// `Self::LEN`. Instead, it will cause undefined behavior and read random
    /// disowned bytes.
    ///
    /// There is no guarantee the provided bytes will fit the curve.
    pub unsafe fn from_slice_unchecked(bytes: &[u8]) -> Self {
        Self(Bytes64::from_slice_unchecked(bytes))
    }

    /// Hash of the public key
    pub fn hash(&self) -> Bytes32 {
        Hasher::hash(self.as_ref())
    }
}

impl Deref for PublicKey {
    type Target = [u8; PublicKey::LEN];

    fn deref(&self) -> &[u8; PublicKey::LEN] {
        self.0.deref()
    }
}

impl AsRef<[u8]> for PublicKey {
    fn as_ref(&self) -> &[u8] {
        self.0.as_ref()
    }
}

impl AsMut<[u8]> for PublicKey {
    fn as_mut(&mut self) -> &mut [u8] {
        self.0.as_mut()
    }
}

impl From<PublicKey> for [u8; PublicKey::LEN] {
    fn from(pk: PublicKey) -> [u8; PublicKey::LEN] {
        pk.0.into()
    }
}

impl fmt::LowerHex for PublicKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.0.fmt(f)
    }
}

impl fmt::UpperHex for PublicKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.0.fmt(f)
    }
}

impl fmt::Debug for PublicKey {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.0.fmt(f)
    }
}

impl fmt::Display for PublicKey {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.0.fmt(f)
    }
}

#[cfg(feature = "std")]
mod use_std {
    use super::*;
    use crate::{Error, SecretKey};

    use secp256k1::{Error as Secp256k1Error, PublicKey as Secp256k1PublicKey, Secp256k1};

    use core::borrow::Borrow;
    use core::str;

    const UNCOMPRESSED_PUBLIC_KEY_SIZE: usize = 65;

    // Internal secp256k1 identifier for uncompressed point
    //
    // https://github.com/rust-bitcoin/rust-secp256k1/blob/ecb62612b57bf3aa8d8017d611d571f86bfdb5dd/secp256k1-sys/depend/secp256k1/include/secp256k1.h#L196
    const SECP_UNCOMPRESSED_FLAG: u8 = 4;

    impl PublicKey {
        /// Check if the provided slice represents a public key that is in the
        /// curve.
        ///
        /// # Safety
        ///
        /// This function extends the unsafety of
        /// [`PublicKey::as_ref_unchecked`].
        pub unsafe fn is_slice_in_curve_unchecked(slice: &[u8]) -> bool {
            use secp256k1::ffi::{self, CPtr};

            let public = Self::as_ref_unchecked(slice);

            let mut public_with_flag = [0u8; UNCOMPRESSED_PUBLIC_KEY_SIZE];

            public_with_flag[1..].copy_from_slice(public.as_ref());

            // Safety: FFI call
            let curve = ffi::secp256k1_ec_pubkey_parse(
                ffi::secp256k1_context_no_precomp,
                &mut ffi::PublicKey::new(),
                public_with_flag.as_c_ptr(),
                UNCOMPRESSED_PUBLIC_KEY_SIZE,
            );

            curve == 1
        }

        /// Check if the secret key representation is in the curve.
        pub fn is_in_curve(&self) -> bool {
            // Safety: struct is guaranteed to reference itself with correct len
            unsafe { Self::is_slice_in_curve_unchecked(self.as_ref()) }
        }

        pub(crate) fn from_secp(pk: &Secp256k1PublicKey) -> PublicKey {
            debug_assert_eq!(
                UNCOMPRESSED_PUBLIC_KEY_SIZE,
                secp256k1::constants::UNCOMPRESSED_PUBLIC_KEY_SIZE
            );

            let pk = pk.serialize_uncompressed();

            debug_assert_eq!(SECP_UNCOMPRESSED_FLAG, pk[0]);

            // Ignore the first byte of the compression flag
            let pk = &pk[1..];

            // Safety: compile-time assertion of size correctness
            unsafe { Self::from_slice_unchecked(pk) }
        }

        pub(crate) fn _to_secp(&self) -> Result<Secp256k1PublicKey, Error> {
            let mut pk = [SECP_UNCOMPRESSED_FLAG; UNCOMPRESSED_PUBLIC_KEY_SIZE];

            debug_assert_eq!(SECP_UNCOMPRESSED_FLAG, pk[0]);

            pk[1..].copy_from_slice(self.as_ref());

            let pk = Secp256k1PublicKey::from_slice(&pk)?;

            Ok(pk)
        }
    }

    impl TryFrom<Bytes64> for PublicKey {
        type Error = Error;

        fn try_from(b: Bytes64) -> Result<Self, Self::Error> {
            let public = PublicKey(b);

            public
                .is_in_curve()
                .then_some(public)
                .ok_or(Error::InvalidPublicKey)
        }
    }

    impl TryFrom<&[u8]> for PublicKey {
        type Error = Error;

        fn try_from(slice: &[u8]) -> Result<Self, Self::Error> {
            Bytes64::try_from(slice)
                .map_err(|_| Secp256k1Error::InvalidPublicKey.into())
                .and_then(PublicKey::try_from)
        }
    }

    impl From<&SecretKey> for PublicKey {
        fn from(s: &SecretKey) -> PublicKey {
            let secp = Secp256k1::new();

            let secret = s.borrow();

            // Copy here is unavoidable since there is no API in secp256k1 to create
            // uncompressed keys directly
            let public = Secp256k1PublicKey::from_secret_key(&secp, secret);

            Self::from_secp(&public)
        }
    }

    impl str::FromStr for PublicKey {
        type Err = Error;

        fn from_str(s: &str) -> Result<Self, Self::Err> {
            Bytes64::from_str(s)
                .map_err(|_| Secp256k1Error::InvalidPublicKey.into())
                .and_then(PublicKey::try_from)
        }
    }
}