1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
use crate::Error;

use fuel_types::Bytes64;

use core::ops::Deref;
use core::{fmt, str};

#[derive(Default, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(transparent)]
/// Secp256k1 signature implementation
pub struct Signature(Bytes64);

impl Signature {
    /// Memory length of the type
    pub const LEN: usize = Bytes64::LEN;

    /// Add a conversion from arbitrary slices into owned
    ///
    /// # Safety
    ///
    /// There is no guarantee the provided bytes will be a valid signature. Internally, some FFI
    /// calls to `secp256k1` are performed and we might have undefined behavior in case the bytes
    /// are not canonically encoded to a valid `secp256k1` signature.
    pub unsafe fn from_bytes_unchecked(bytes: [u8; Self::LEN]) -> Self {
        Self(bytes.into())
    }

    /// Add a conversion from arbitrary slices into owned
    ///
    /// # Safety
    ///
    /// This function will not panic if the length of the slice is smaller than
    /// `Self::LEN`. Instead, it will cause undefined behavior and read random
    /// disowned bytes.
    ///
    /// There is no guarantee the provided bytes will be a valid signature. Internally, some FFI
    /// calls to `secp256k1` are performed and we might have undefined behavior in case the bytes
    /// are not canonically encoded to a valid `secp256k1` signature.
    pub unsafe fn from_slice_unchecked(bytes: &[u8]) -> Self {
        Self(Bytes64::from_slice_unchecked(bytes))
    }

    /// Copy-free reference cast
    ///
    /// There is no guarantee the provided bytes will fit the field.
    ///
    /// # Safety
    ///
    /// Inputs smaller than `Self::LEN` will cause undefined behavior.
    pub unsafe fn as_ref_unchecked(bytes: &[u8]) -> &Self {
        // The interpreter will frequently make references to keys and values using
        // logically checked slices.
        //
        // This function will avoid unnecessary copy to owned slices for the interpreter
        // access
        &*(bytes.as_ptr() as *const Self)
    }
}

impl Deref for Signature {
    type Target = [u8; Signature::LEN];

    fn deref(&self) -> &[u8; Signature::LEN] {
        self.0.deref()
    }
}

impl AsRef<[u8]> for Signature {
    fn as_ref(&self) -> &[u8] {
        self.0.as_ref()
    }
}

impl AsMut<[u8]> for Signature {
    fn as_mut(&mut self) -> &mut [u8] {
        self.0.as_mut()
    }
}

impl From<Signature> for [u8; Signature::LEN] {
    fn from(salt: Signature) -> [u8; Signature::LEN] {
        salt.0.into()
    }
}

impl fmt::LowerHex for Signature {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.0.fmt(f)
    }
}

impl fmt::UpperHex for Signature {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.0.fmt(f)
    }
}

impl fmt::Debug for Signature {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.0.fmt(f)
    }
}

impl fmt::Display for Signature {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.0.fmt(f)
    }
}

impl From<Bytes64> for Signature {
    fn from(b: Bytes64) -> Self {
        Self(b)
    }
}

impl From<Signature> for Bytes64 {
    fn from(s: Signature) -> Self {
        s.0
    }
}

impl str::FromStr for Signature {
    type Err = Error;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        Bytes64::from_str(s)
            .map_err(|_| Error::InvalidSignature)
            .map(|s| s.into())
    }
}

#[cfg(feature = "std")]
mod use_std {
    use crate::{Error, Message, PublicKey, SecretKey, Signature};

    use lazy_static::lazy_static;
    use secp256k1::{
        ecdsa::{RecoverableSignature as SecpRecoverableSignature, RecoveryId},
        Secp256k1,
    };

    use std::borrow::Borrow;

    lazy_static! {
        static ref SIGNING_SECP: Secp256k1<secp256k1::SignOnly> = Secp256k1::signing_only();
        static ref RECOVER_SECP: Secp256k1<secp256k1::All> = Secp256k1::new();
    }

    impl Signature {
        // Internal API - this isn't meant to be made public because some assumptions and pre-checks
        // are performed prior to this call
        pub(crate) fn to_secp(&mut self) -> SecpRecoverableSignature {
            let v = (self.as_mut()[32] >> 7) as i32;

            self.truncate_recovery_id();

            let v = RecoveryId::from_i32(v)
                .unwrap_or_else(|_| RecoveryId::from_i32(0).expect("0 is infallible recovery ID"));

            let signature = SecpRecoverableSignature::from_compact(self.as_ref(), v)
                .unwrap_or_else(|_| {
                    SecpRecoverableSignature::from_compact(&[0u8; 64], v)
                        .expect("Zeroed signature is infallible")
                });

            signature
        }

        pub(crate) fn from_secp(signature: SecpRecoverableSignature) -> Self {
            let (v, mut signature) = signature.serialize_compact();

            let v = v.to_i32();

            signature[32] |= (v << 7) as u8;

            // Safety: the security of this call reflects the security of secp256k1 FFI
            unsafe { Signature::from_bytes_unchecked(signature) }
        }

        /// Truncate the recovery id from the signature, producing a valid `secp256k1`
        /// representation.
        pub(crate) fn truncate_recovery_id(&mut self) {
            self.as_mut()[32] &= 0x7f;
        }

        /// Sign a given message and compress the `v` to the signature
        ///
        /// The compression scheme is described in
        /// <https://github.com/FuelLabs/fuel-specs/blob/master/specs/protocol/cryptographic_primitives.md#public-key-cryptography>
        pub fn sign(secret: &SecretKey, message: &Message) -> Self {
            let secret = secret.borrow();
            let message = message.to_secp();

            let signature = SIGNING_SECP.sign_ecdsa_recoverable(&message, secret);

            Signature::from_secp(signature)
        }

        /// Recover the public key from a signature performed with
        /// [`Signature::sign`]
        ///
        /// It takes the signature as owned because this operation is not idempotent. The taken
        /// signature will not be recoverable. Signatures are meant to be single use, so this
        /// avoids unnecessary copy.
        pub fn recover(mut self, message: &Message) -> Result<PublicKey, Error> {
            let signature = self.to_secp();
            let message = message.to_secp();

            let pk = RECOVER_SECP
                .recover_ecdsa(&message, &signature)
                .map(|pk| PublicKey::from_secp(&pk))?;

            Ok(pk)
        }

        /// Verify a signature produced by [`Signature::sign`]
        ///
        /// It takes the signature as owned because this operation is not idempotent. The taken
        /// signature will not be recoverable. Signatures are meant to be single use, so this
        /// avoids unnecessary copy.
        pub fn verify(self, pk: &PublicKey, message: &Message) -> Result<(), Error> {
            // TODO evaluate if its worthy to use native verify
            //
            // https://github.com/FuelLabs/fuel-crypto/issues/4

            self.recover(message)
                .and_then(|pk_p| (pk == &pk_p).then_some(()).ok_or(Error::InvalidSignature))
        }
    }
}