fuel_crypto/secp256/backend/r1/
p256.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
//! secp256r1 (P-256) functions

#[cfg(feature = "test-helpers")]
use crate::secp256::signature_format::encode_signature;
use crate::{
    message::Message,
    secp256::signature_format::decode_signature,
    Error,
};
#[cfg(feature = "test-helpers")]
use ecdsa::RecoveryId;
use fuel_types::Bytes64;
use p256::ecdsa::VerifyingKey;

/// Sign a prehashed message. With the given key.
#[cfg(feature = "test-helpers")]
pub fn sign_prehashed(
    signing_key: &p256::ecdsa::SigningKey,
    message: &Message,
) -> Result<Bytes64, Error> {
    let (signature, _) = signing_key
        .sign_prehash_recoverable(&**message)
        .map_err(|_| Error::FailedToSign)?;

    let signature = signature.normalize_s().unwrap_or(signature);

    // TODO: this is a hack to get the recovery id. The signature should be normalized
    // before computing the recovery id, but p256 library doesn't support this, and
    // instead always computes the recovery id from non-normalized signature.
    // So instead the recovery id is determined by checking which variant matches
    // the original public key.

    let recid1 = RecoveryId::new(false, false);
    let recid2 = RecoveryId::new(true, false);

    let rec1 = VerifyingKey::recover_from_prehash(&**message, &signature, recid1);
    let rec2 = VerifyingKey::recover_from_prehash(&**message, &signature, recid2);

    let actual = signing_key.verifying_key();

    let recovery_id = if rec1.map(|r| r == *actual).unwrap_or(false) {
        recid1
    } else if rec2.map(|r| r == *actual).unwrap_or(false) {
        recid2
    } else {
        unreachable!("Invalid signature generated");
    };

    let recovery_id = recovery_id
        .try_into()
        .expect("reduced-x recovery ids are never generated");
    Ok(Bytes64::from(encode_signature(
        signature.to_bytes().into(),
        recovery_id,
    )))
}

/// Convert the public key point to its uncompressed non-prefixed representation,
/// i.e. 32 bytes of x coordinate and 32 bytes of y coordinate.
#[cfg(feature = "test-helpers")]
pub fn encode_pubkey(key: VerifyingKey) -> [u8; 64] {
    let point = key.to_encoded_point(false);
    let mut result = [0u8; 64];
    result[..32].copy_from_slice(point.x().unwrap());
    result[32..].copy_from_slice(point.y().unwrap());
    result
}

/// Recover a public key from a signature and a message digest. It assumes
/// a compacted signature
pub fn recover(signature: &Bytes64, message: &Message) -> Result<Bytes64, Error> {
    let (sig, recid) = decode_signature(**signature);
    let sig =
        p256::ecdsa::Signature::from_slice(&sig).map_err(|_| Error::InvalidSignature)?;
    let vk = VerifyingKey::recover_from_prehash(&**message, &sig, recid.into())
        .map_err(|_| Error::InvalidSignature)?;
    let point = vk.to_encoded_point(false);
    let mut raw = Bytes64::zeroed();
    raw[..32].copy_from_slice(point.x().unwrap());
    raw[32..].copy_from_slice(point.y().unwrap());
    Ok(raw)
}

#[cfg(test)]
mod tests {
    use super::*;

    use p256::ecdsa::SigningKey;
    use rand::{
        rngs::StdRng,
        Rng,
        SeedableRng,
    };

    #[test]
    fn test_raw_recover() {
        let mut rng = &mut StdRng::seed_from_u64(1234);

        let signing_key = SigningKey::random(&mut rng);
        let verifying_key = signing_key.verifying_key();

        let message = Message::new([rng.gen(); 100]);

        let (signature, recovery_id) =
            signing_key.sign_prehash_recoverable(&*message).unwrap();

        let recovered =
            VerifyingKey::recover_from_prehash(&*message, &signature, recovery_id)
                .expect("Unable to recover the public key");

        assert_eq!(recovered, *verifying_key);
    }

    #[test]
    fn test_secp256r1_recover_from_msg() {
        let mut rng = &mut StdRng::seed_from_u64(1234);

        for _ in 0..100 {
            let signing_key = SigningKey::random(&mut rng);
            let verifying_key = signing_key.verifying_key();

            let message = Message::new([rng.gen(); 100]);
            let signature =
                sign_prehashed(&signing_key, &message).expect("Couldn't sign");

            let Ok(recovered) = recover(&signature, &message) else {
                panic!("Failed to recover public key from the message");
            };

            assert_eq!(*recovered, encode_pubkey(*verifying_key));
        }
    }

    #[test]
    fn test_signature_and_recovery_id_encoding_roundtrip() {
        let mut rng = &mut StdRng::seed_from_u64(1234);

        for _ in 0..100 {
            let message = Message::new([rng.gen(); 100]);
            let signing_key = SigningKey::random(&mut rng);
            let (signature, _) = signing_key.sign_prehash_recoverable(&*message).unwrap();
            let signature = signature.normalize_s().unwrap_or(signature);
            let signature: [u8; 64] = signature.to_bytes().into();

            let recovery_id = RecoveryId::from_byte(0).unwrap().try_into().unwrap();
            let encoded = encode_signature(signature, recovery_id);

            let (de_sig, de_recid) = decode_signature(encoded);
            assert_eq!(signature, de_sig);
            assert_eq!(recovery_id, de_recid);

            let recovery_id = RecoveryId::from_byte(1).unwrap().try_into().unwrap();
            let encoded = encode_signature(signature, recovery_id);

            let (de_sig, de_recid) = decode_signature(encoded);
            assert_eq!(signature, de_sig);
            assert_eq!(recovery_id, de_recid);
        }
    }
}