1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
use crate::common::{
    node::{ChildResult, ParentNode},
    path::{Instruction, Path},
};

/// # Path Iterator
///
/// A naturally arising property of binary trees is that a leaf index encodes
/// the unique path needed to traverse from the root of the tree to that leaf.
/// The index's binary representation can be read left to right as a sequence of
/// traversal instructions: a `0` bit means "descend left" and a `1` bit means
/// "descend right". By following the `x` bits composing the index, starting at
/// the root, descending to the left child at each `0`, descending to the right
/// child at each `1`, we arrive at the leaf position, having touched every node
/// position along the path formed by this index. Note that this algorithm does
/// not prescribe how to descend from one node to the next; it describes merely
/// the direction in which to descend at each step.
///
/// Alternatively, this can be interpreted as reading the index's most
/// significant bit (MSB) at an offset `n`: read the `n`th bit to the right of
/// the MSB. Here, `n` is a given step in the tree traversal, starting at 0, and
/// incrementing by 1 at each depth until the leaf is reached. The
/// traversal path is then the list of nodes calculated by traversing the tree
/// using the instruction (`0` or `1`) indicated at `x`<sub>`n`</sub>, where `x`
/// is the index in binary representation, and `n` is the offset for each digit
/// in `x` from the MSB.
///
/// Reversing this path gives us the path from the leaf to the root.
///
/// Imagine a 3-bit integer type `u3` underpinning a tree's leaf indices. 3 bits
/// give our tree a maximum height of 3, and a maximum number of leaf nodes
/// 2<sup>3</sup> = 8. For demonstration, internal nodes are numbered using
/// in-order indices (note that this would require an integer type with 4 bits
/// or more in practice). In-order indexing provides a deterministic way to
/// descend from one node to the next (see [Position](crate::common::Position)).
///
/// ```text
///                             07
///                            /  \
///                           /    \
///                          /      \
///                         /        \
///                        /          \
///                       /            \
///                     03              11
///                    /  \            /  \
///                   /    \          /    \
///                 01      05      09      13
///                /  \    /  \    /  \    /  \
/// In-order idx: 00  02  04  06  08  10  12  14
///     Leaf idx:  0   1   2   3   4   5   6   7
/// ```
///
/// Let us now find the path to leaf with index `6`. In the above diagram, this
/// is the seventh leaf in the leaf layer. A priori, we can see that the path
/// from the root to this leaf is represented by the following list of in-order
/// indices: `07, 11, 13, 12` (note that the leaf index that corresponds to the
/// in-order index `12` is `6`).
///
/// ```text
/// 0d6: u3 = 0b110
///         = Right, Right, Left
/// ```
///
/// Starting at the tree's root at index `07`, we can follow the instructions
/// encoded by the binary representation of leaf `6` (`0b110`). In combination
/// with our in-order index rules for descending nodes, we evaluate the
/// following:
///
/// 1. The first bit is `1`; move right from `07` to `11`.
/// 2. The next bit is `1`; move right from `11` to `13`.
/// 3. The next and final bit is `0`; move left from `13` to `12`.
///
/// We have arrived at the desired leaf position with in-order index `12` and
/// leaf index `6`. Indeed, following the instructions at each bit has produced
/// the same list of positional indices that we observed earlier: `07, 11, 13,
/// 12`.
///
pub struct PathIter<T: ParentNode> {
    leaf: T,
    current: Option<(ChildResult<T>, ChildResult<T>)>,
    current_offset: usize,
}

impl<T> PathIter<T>
where
    T: ParentNode + Clone,
{
    pub fn new(root: &T, leaf: &T) -> Self {
        let initial = (Ok(root.clone()), Ok(root.clone()));

        // The initial offset from the most significant bit (MSB).
        //
        // The offset from the MSB indicates which bit to read when deducing the
        // path from the root to the leaf. As we descend down the tree,
        // increasing the traversal depth, we increment this offset and read the
        // corresponding bit to get the next traversal instruction.
        //
        // In the general case, we start by reading the first bit of the path at
        // offset 0. This happens when the path fills its allocated memory;
        // e.g., a path of 256 instructions is encoded within a 256 bit
        // allocation for the leaf key. This also means that the key size in
        // bits is equal to the maximum height of the tree.
        //
        // In the case that the length of the path is less than the number of
        // bits in the key, the initial offset from the MSB must be augmented to
        // accommodate the shortened path. This occurs when the key is allocated
        // with a larger address space to reduce collisions of node addresses.
        //
        // E.g,
        // With an 8-bit key and heights 1 through 7:
        //
        // Height Depth
        // 7      0                        127                    Offset = Bits - Height = 8 - 7 = 1
        //                                 / \
        //                                /   \
        // ...                          ...   ...
        //                              /       \
        //                             /         \
        // 3       4                  07         247              Offset = Bits - Height = 8 - 3 = 5
        //                           /  \        / \
        //                          /    \     ...  \
        //                         /      \          \
        //                        /        \          \
        //                       /          \          \
        //                      /            \          \
        // 2       5          03              11        251       Offset = Bits - Height = 8 - 2 = 6
        //                   /  \            /  \       / \
        //                  /    \          /    \    ...  \
        // 1       6      01      05      09      13       253    Offset = Bits - Height = 8 - 1 = 7
        //               /  \    /  \    /  \    /  \      / \
        // 0       7    00  02  04  06  08  10  12  14   252 254
        //              00  01  02  03  04  05  06  07   126 127
        //
        let initial_offset = T::key_size_in_bits() - root.height() as usize;
        Self {
            leaf: leaf.clone(),
            current: Some(initial),
            current_offset: initial_offset,
        }
    }
}

impl<T> Iterator for PathIter<T>
where
    T: ParentNode,
    T::Key: Path,
{
    type Item = (ChildResult<T>, ChildResult<T>);

    fn next(&mut self) -> Option<Self::Item> {
        let value = self.current.take();

        if let Some((ref path_node, _)) = value {
            match path_node {
                Ok(path_node) if path_node.is_node() => {
                    let path = self.leaf.leaf_key();
                    let instruction = path.get_instruction(self.current_offset);
                    self.current = instruction.map(|instruction| {
                        self.current_offset += 1;
                        match instruction {
                            Instruction::Left => (path_node.left_child(), path_node.right_child()),
                            Instruction::Right => (path_node.right_child(), path_node.left_child()),
                        }
                    });
                }
                // Terminate the iterator if any of the following are true:
                //    - The path node is a leaf (traversal is complete)
                //    - The left or right child was not found and returned a
                //      ChildNotFound error
                //    - The left or right child returned any other error
                _ => self.current = None,
            }
        }

        value
    }
}

pub trait AsPathIterator<T: ParentNode> {
    fn as_path_iter(&self, leaf: &Self) -> PathIter<T>;
}

impl<T> AsPathIterator<T> for T
where
    T: ParentNode + Clone,
{
    fn as_path_iter(&self, leaf: &Self) -> PathIter<T> {
        PathIter::new(self, leaf)
    }
}

#[cfg(test)]
mod test {
    use crate::common::{
        node::{ChildResult, Node, ParentNode},
        AsPathIterator, Bytes8,
    };
    use alloc::vec::Vec;
    use core::convert::Infallible;

    #[derive(Debug, Clone, PartialEq)]
    struct TestNode {
        value: u64,
    }

    impl TestNode {
        pub fn in_order_index(&self) -> u64 {
            self.value
        }

        pub fn leaf_index(&self) -> u64 {
            assert!(self.is_leaf());
            self.value / 2
        }

        pub fn from_in_order_index(index: u64) -> Self {
            Self { value: index }
        }
        pub fn from_leaf_index(index: u64) -> Self {
            Self { value: index * 2 }
        }

        pub fn height(&self) -> u32 {
            (!self.in_order_index()).trailing_zeros()
        }

        pub fn is_leaf(&self) -> bool {
            self.in_order_index() % 2 == 0
        }

        fn child(&self, direction: i64) -> Self {
            assert!(!self.is_leaf());
            let shift = 1 << (self.height() - 1);
            let index = self.in_order_index() as i64 + shift * direction;
            Self::from_in_order_index(index as u64)
        }
    }

    impl Node for TestNode {
        type Key = Bytes8;

        fn height(&self) -> u32 {
            TestNode::height(self)
        }

        fn leaf_key(&self) -> Self::Key {
            TestNode::leaf_index(self).to_be_bytes()
        }

        fn is_leaf(&self) -> bool {
            TestNode::is_leaf(self)
        }

        fn is_node(&self) -> bool {
            !TestNode::is_leaf(self)
        }
    }

    impl ParentNode for TestNode {
        type Error = Infallible;

        fn left_child(&self) -> ChildResult<Self> {
            Ok(TestNode::child(self, -1))
        }

        fn right_child(&self) -> ChildResult<Self> {
            Ok(TestNode::child(self, 1))
        }
    }

    #[test]
    fn test_path_iter_returns_path() {
        //
        //               07
        //              /  \
        //             /    \
        //            /      \
        //           /        \
        //          /          \
        //         /            \
        //       03              11
        //      /  \            /  \
        //     /    \          /    \
        //   01      05      09      13
        //  /  \    /  \    /  \    /  \
        // 00  02  04  06  08  10  12  14
        // 00  01  02  03  04  05  06  07
        //
        type Node = TestNode;
        let root = Node::from_in_order_index(7);

        {
            let leaf = Node::from_leaf_index(0);
            let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
                .as_path_iter(&leaf)
                .map(|(path, side)| (path.unwrap(), side.unwrap()))
                .unzip();
            let expected_path = vec![
                Node::from_in_order_index(7),
                Node::from_in_order_index(3),
                Node::from_in_order_index(1),
                Node::from_leaf_index(0),
            ];
            assert_eq!(path, expected_path);
        }

        {
            let leaf = Node::from_leaf_index(1);
            let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
                .as_path_iter(&leaf)
                .map(|(path, side)| (path.unwrap(), side.unwrap()))
                .unzip();
            let expected_path = vec![
                Node::from_in_order_index(7),
                Node::from_in_order_index(3),
                Node::from_in_order_index(1),
                Node::from_leaf_index(1),
            ];
            assert_eq!(path, expected_path);
        }

        {
            let leaf = Node::from_leaf_index(2);
            let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
                .as_path_iter(&leaf)
                .map(|(path, side)| (path.unwrap(), side.unwrap()))
                .unzip();
            let expected_path = vec![
                Node::from_in_order_index(7),
                Node::from_in_order_index(3),
                Node::from_in_order_index(5),
                Node::from_leaf_index(2),
            ];
            assert_eq!(path, expected_path);
        }

        {
            let leaf = Node::from_leaf_index(3);
            let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
                .as_path_iter(&leaf)
                .map(|(path, side)| (path.unwrap(), side.unwrap()))
                .unzip();
            let expected_path = vec![
                Node::from_in_order_index(7),
                Node::from_in_order_index(3),
                Node::from_in_order_index(5),
                Node::from_leaf_index(3),
            ];
            assert_eq!(path, expected_path);
        }

        {
            let leaf = Node::from_leaf_index(4);
            let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
                .as_path_iter(&leaf)
                .map(|(path, side)| (path.unwrap(), side.unwrap()))
                .unzip();
            let expected_path = vec![
                Node::from_in_order_index(7),
                Node::from_in_order_index(11),
                Node::from_in_order_index(9),
                Node::from_leaf_index(4),
            ];
            assert_eq!(path, expected_path);
        }

        {
            let leaf = Node::from_leaf_index(5);
            let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
                .as_path_iter(&leaf)
                .map(|(path, side)| (path.unwrap(), side.unwrap()))
                .unzip();
            let expected_path = vec![
                Node::from_in_order_index(7),
                Node::from_in_order_index(11),
                Node::from_in_order_index(9),
                Node::from_leaf_index(5),
            ];
            assert_eq!(path, expected_path);
        }

        {
            let leaf = Node::from_leaf_index(6);
            let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
                .as_path_iter(&leaf)
                .map(|(path, side)| (path.unwrap(), side.unwrap()))
                .unzip();
            let expected_path = vec![
                Node::from_in_order_index(7),
                Node::from_in_order_index(11),
                Node::from_in_order_index(13),
                Node::from_leaf_index(6),
            ];
            assert_eq!(path, expected_path);
        }

        {
            let leaf = Node::from_leaf_index(7);
            let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
                .as_path_iter(&leaf)
                .map(|(path, side)| (path.unwrap(), side.unwrap()))
                .unzip();
            let expected_path = vec![
                Node::from_in_order_index(7),
                Node::from_in_order_index(11),
                Node::from_in_order_index(13),
                Node::from_leaf_index(7),
            ];
            assert_eq!(path, expected_path);
        }
    }

    #[test]
    fn test_path_iter_returns_side_nodes() {
        //
        //               07
        //              /  \
        //             /    \
        //            /      \
        //           /        \
        //          /          \
        //         /            \
        //       03              11
        //      /  \            /  \
        //     /    \          /    \
        //   01      05      09      13
        //  /  \    /  \    /  \    /  \
        // 00  02  04  06  08  10  12  14
        // 00  01  02  03  04  05  06  07
        //
        type Node = TestNode;
        let root = Node::from_in_order_index(7); // 2^3 - 1

        {
            let leaf = Node::from_leaf_index(0);
            let (_, side): (Vec<TestNode>, Vec<TestNode>) = root
                .as_path_iter(&leaf)
                .map(|(path, side)| (path.unwrap(), side.unwrap()))
                .unzip();
            let expected_side = vec![
                Node::from_in_order_index(7),
                Node::from_in_order_index(11), // Sibling of node 3
                Node::from_in_order_index(5),  // Sibling of node 1
                Node::from_leaf_index(1),      // Sibling of leaf 0
            ];
            assert_eq!(side, expected_side);
        }

        {
            let leaf = Node::from_leaf_index(1);
            let (_, side): (Vec<TestNode>, Vec<TestNode>) = root
                .as_path_iter(&leaf)
                .map(|(path, side)| (path.unwrap(), side.unwrap()))
                .unzip();
            let expected_side = vec![
                Node::from_in_order_index(7),
                Node::from_in_order_index(11), // Sibling of node 3
                Node::from_in_order_index(5),  // Sibling of node 1
                Node::from_leaf_index(0),      // Sibling of leaf 1
            ];
            assert_eq!(side, expected_side);
        }

        {
            let leaf = Node::from_leaf_index(2);
            let (_, side): (Vec<TestNode>, Vec<TestNode>) = root
                .as_path_iter(&leaf)
                .map(|(path, side)| (path.unwrap(), side.unwrap()))
                .unzip();
            let expected_side = vec![
                Node::from_in_order_index(7),
                Node::from_in_order_index(11), // Sibling of node 3
                Node::from_in_order_index(1),  // Sibling of node 5
                Node::from_leaf_index(3),      // Sibling of leaf 2
            ];
            assert_eq!(side, expected_side);
        }

        {
            let leaf = Node::from_leaf_index(3);
            let (_, side): (Vec<TestNode>, Vec<TestNode>) = root
                .as_path_iter(&leaf)
                .map(|(path, side)| (path.unwrap(), side.unwrap()))
                .unzip();
            let expected_side = vec![
                Node::from_in_order_index(7),
                Node::from_in_order_index(11), // Sibling of node 3
                Node::from_in_order_index(1),  // Sibling of node 5
                Node::from_leaf_index(2),      // Sibling of leaf 3
            ];
            assert_eq!(side, expected_side);
        }

        {
            let leaf = Node::from_leaf_index(4);
            let (_, side): (Vec<TestNode>, Vec<TestNode>) = root
                .as_path_iter(&leaf)
                .map(|(path, side)| (path.unwrap(), side.unwrap()))
                .unzip();
            let expected_side = vec![
                Node::from_in_order_index(7),
                Node::from_in_order_index(3),  // Sibling of node 11
                Node::from_in_order_index(13), // Sibling of node 9
                Node::from_leaf_index(5),      // Sibling of leaf 4
            ];
            assert_eq!(side, expected_side);
        }

        {
            let leaf = Node::from_leaf_index(5);
            let (_, side): (Vec<TestNode>, Vec<TestNode>) = root
                .as_path_iter(&leaf)
                .map(|(path, side)| (path.unwrap(), side.unwrap()))
                .unzip();
            let expected_side = vec![
                Node::from_in_order_index(7),
                Node::from_in_order_index(3),  // Sibling of node 11
                Node::from_in_order_index(13), // Sibling of node 9
                Node::from_leaf_index(4),      // Sibling of leaf 5
            ];
            assert_eq!(side, expected_side);
        }

        {
            let leaf = Node::from_leaf_index(6);
            let (_, side): (Vec<TestNode>, Vec<TestNode>) = root
                .as_path_iter(&leaf)
                .map(|(path, side)| (path.unwrap(), side.unwrap()))
                .unzip();
            let expected_side = vec![
                Node::from_in_order_index(7),
                Node::from_in_order_index(3), // Sibling of node 11
                Node::from_in_order_index(9), // Sibling of node 13
                Node::from_leaf_index(7),     // Sibling of leaf 6
            ];
            assert_eq!(side, expected_side);
        }

        {
            let leaf = Node::from_leaf_index(7);
            let (_, side): (Vec<TestNode>, Vec<TestNode>) = root
                .as_path_iter(&leaf)
                .map(|(path, side)| (path.unwrap(), side.unwrap()))
                .unzip();
            let expected_side = vec![
                Node::from_in_order_index(7),
                Node::from_in_order_index(3), // Sibling of node 11
                Node::from_in_order_index(9), // Sibling of node 13
                Node::from_leaf_index(6),     // Sibling of leaf 7
            ];
            assert_eq!(side, expected_side);
        }
    }

    #[test]
    fn test_path_iter_height_4() {
        type Node = TestNode;
        let root = Node::from_in_order_index(15); // 2^4 - 1
        let leaf = Node::from_leaf_index(4); // 0b0100

        let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
            .as_path_iter(&leaf)
            .map(|(path, side)| (path.unwrap(), side.unwrap()))
            .unzip();

        let expected_path = vec![
            Node::from_in_order_index(15),
            Node::from_in_order_index(7),
            Node::from_in_order_index(11),
            Node::from_in_order_index(9),
            Node::from_in_order_index(8),
        ];
        assert_eq!(path, expected_path);
    }

    #[test]
    fn test_path_iter_height_8() {
        type Node = TestNode;
        let root = Node::from_in_order_index(255); // 2^8 - 1
        let leaf = Node::from_leaf_index(61); // 0b00111101

        let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
            .as_path_iter(&leaf)
            .map(|(path, side)| (path.unwrap(), side.unwrap()))
            .unzip();

        let expected_path = vec![
            Node::from_in_order_index(255),
            Node::from_in_order_index(127),
            Node::from_in_order_index(63),
            Node::from_in_order_index(95),
            Node::from_in_order_index(111),
            Node::from_in_order_index(119),
            Node::from_in_order_index(123),
            Node::from_in_order_index(121),
            Node::from_leaf_index(61),
        ];
        assert_eq!(path, expected_path);
    }

    #[test]
    fn test_path_iter_returns_root_root_when_root_is_leaf() {
        type Node = TestNode;
        let root = Node::from_in_order_index(0);
        let leaf = Node::from_leaf_index(0);

        let (path, side): (Vec<TestNode>, Vec<TestNode>) = root
            .as_path_iter(&leaf)
            .map(|(path, side)| (path.unwrap(), side.unwrap()))
            .unzip();

        let expected_path = vec![Node::from_in_order_index(0)];
        let expected_side = vec![Node::from_in_order_index(0)];
        assert_eq!(path, expected_path);
        assert_eq!(side, expected_side);
    }
}