1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
use crate::common::{
node::{ChildResult, Node, ParentNode},
Bytes8, PositionPath,
};
use core::convert::Infallible;
/// # Position
///
/// A `Position` represents a node's position in a binary tree by encapsulating
/// the node's index data. Indices are calculated through in-order traversal of
/// the nodes, starting with the first leaf node. Indexing starts at 0.
///
/// Merkle Trees
///
/// In the context of Merkle trees, trees are constructed "upwards" from leaf
/// nodes. Therefore, indexing is done from the bottom up, starting with the
/// leaves, rather than top down, starting with the root, and we can guarantee a
/// deterministic construction of index data.
///
/// ```text
/// 07
/// / \
/// / \
/// / \
/// / \
/// / \
/// / \
/// 03 11
/// / \ / \
/// / \ / \
/// 01 05 09 13
/// / \ / \ / \ / \
/// 00 02 04 06 08 10 12 14
/// ```
///
/// In-order indices can be considered internal to the `Position` struct and are
/// used to facilitate the calculation of positional attributes and the
/// construction of other nodes. Leaf nodes have both an in-order index as part
/// of the tree, and a leaf index determined by its position in the bottom row.
/// Because of the in-order traversal used to calculate the in-order indices,
/// leaf nodes have the property that their in-order index is always equal to
/// their leaf index multiplied by 2.
///
/// ```text
/// / \ / \ / \ / \
/// Leaf indices: 00 01 02 03 04 05 06 07
/// In-order indices: 00 02 04 06 08 10 12 14
/// ```
///
/// This allows us to construct a `Position` (and its in-order index) by
/// providing either an in-order index directly or, in the case of a leaf, a
/// leaf index. This functionality is captured by `from_in_order_index()` and
/// `from_leaf_index()` respectively.
///
/// Traversal of a Merkle Tree can be performed by the methods on a given
/// `Position` to retrieve its sibling, parent, or uncle `Position`.
///
/// Merkle Mountain Ranges
///
/// Because the `Position` indices are calculated from in-order traversal
/// starting with the leaves, the deterministic quality of the indices holds
/// true for imbalanced binary trees, including Merkle Mountain Ranges. Consider
/// the following binary tree construction composed of seven leaves (with leaf
/// indices 0 through 6):
///
/// ```text
/// 03
/// / \
/// / \
/// 01 05 09
/// / \ / \ / \
/// 00 02 04 06 08 10 12
/// ```
///
/// Note the absence of internal nodes that would be present in a fully balanced
/// tree: inner nodes with indices 7 and 11 are absent. This is owing to the
/// fact that node indices are calculated deterministically through in-order
/// traversal, not calculated as a sequence.
///
/// Traversal of a Merkle Mountain Range is still done in the same manner as a
/// balanced Merkle tree, using methods to retrieve a `Position's` sibling,
/// parent, or uncle `Position`. However, in such cases, the corresponding
/// sibling or uncle nodes are not guaranteed to exist in the tree.
///
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct Position(u64);
const LEFT_CHILD_DIRECTION: i64 = -1;
const RIGHT_CHILD_DIRECTION: i64 = 1;
impl Position {
pub fn in_order_index(self) -> u64 {
self.0
}
pub fn leaf_index(self) -> u64 {
assert!(self.is_leaf());
self.in_order_index() / 2
}
/// Construct a position from an in-order index.
pub fn from_in_order_index(index: u64) -> Self {
Position(index)
}
/// Construct a position from a leaf index. The in-order index corresponding
/// to the leaf index will always equal the leaf index multiplied by 2.
pub fn from_leaf_index(index: u64) -> Self {
Position(index * 2)
}
/// The sibling position.
/// A position shares the same parent and height as its sibling.
pub fn sibling(self) -> Self {
let shift = 1 << (self.height() + 1);
let index = self.in_order_index() as i64 + shift * self.direction();
Self::from_in_order_index(index as u64)
}
/// The parent position.
/// The parent position has a height less 1 relative to this position.
pub fn parent(self) -> Self {
let shift = 1 << self.height();
let index = self.in_order_index() as i64 + shift * self.direction();
Self::from_in_order_index(index as u64)
}
/// The uncle position.
/// The uncle position is the sibling of the parent and has a height less 1
/// relative to this position.
pub fn uncle(self) -> Self {
self.parent().sibling()
}
/// The left child position.
/// See [child](Self::child).
pub fn left_child(self) -> Self {
self.child(LEFT_CHILD_DIRECTION)
}
/// The right child position.
/// See [child](Self::child).
pub fn right_child(self) -> Self {
self.child(RIGHT_CHILD_DIRECTION)
}
/// The height of the index in a binary tree.
/// Leaf nodes represent height 0. A leaf's parent represents height 1.
/// Height values monotonically increase as you ascend the tree.
///
/// Height is deterministically calculated as the number of trailing zeros
/// of the complement of the position's index. The following table
/// demonstrates the relationship between a position's height and the
/// trailing zeros.
///
/// | Index (Dec) | Index (Bin) | !Index (Bin) | Trailing 0s | Height |
/// |-------------|-------------|--------------|-------------|--------|
/// | 0 | 0000 | 1111 | 0 | 0 |
/// | 2 | 0010 | 1101 | 0 | 0 |
/// | 4 | 0100 | 1011 | 0 | 0 |
/// | 1 | 0001 | 1110 | 1 | 1 |
/// | 5 | 0101 | 1010 | 1 | 1 |
/// | 9 | 1001 | 0110 | 1 | 1 |
/// | 3 | 0011 | 1100 | 2 | 2 |
/// | 11 | 1011 | 0100 | 2 | 2 |
pub fn height(self) -> u32 {
(!self.in_order_index()).trailing_zeros()
}
/// Whether or not this position represents a leaf node.
/// Returns `true` if the position is a leaf node.
/// Returns `false` if the position is an internal node.
///
/// A position is a leaf node if and only if its in-order index is even. A
/// position is an internal node if and only if its in-order index is
/// odd.
pub fn is_leaf(self) -> bool {
self.in_order_index() % 2 == 0
}
/// Whether or not this position represents an internal node.
/// Returns `false` if the position is a leaf node.
/// Returns `true` if the position is an internal node.
///
/// When a position is an internal node, the position will have both a left
/// and right child.
pub fn is_node(self) -> bool {
!self.is_leaf()
}
/// Given a leaf position and the total count of leaves in a tree, get the
/// path from this position to the given leaf position. The shape of the
/// tree is defined by the `leaves_count` parameter and constrains the
/// path. See [PositionPath](crate::common::PositionPath).
pub fn path(self, leaf: &Self, leaves_count: u64) -> PositionPath {
PositionPath::new(self, *leaf, leaves_count)
}
// PRIVATE
/// The child position of the current position given by the direction.
/// A direction of `-1` denotes the left child. A direction of `+1` denotes
/// the right child. A child position has a height less 1 than the
/// current position.
///
/// A child position is calculated as a function of the current position's
/// index and height, and the supplied direction. The left child
/// position has the in-order index arriving before the current index;
/// the right child position has the in-order index arriving after the
/// current index.
fn child(self, direction: i64) -> Self {
assert!(self.is_node());
let shift = 1 << (self.height() - 1);
let index = self.in_order_index() as i64 + shift * direction;
Self::from_in_order_index(index as u64)
}
/// Orientation of the position index relative to its parent.
/// Returns 0 if the index is left of its parent.
/// Returns 1 if the index is right of its parent.
///
/// The orientation is determined by the reading the `n`th rightmost digit
/// of the index's binary value, where `n` = the height of the position
/// `+ 1`. The following table demonstrates the relationships between a
/// position's index, height, and orientation.
///
/// | Index (Dec) | Index (Bin) | Height | Orientation |
/// |-------------|-------------|--------|-------------|
/// | 0 | 0000 | 0 | 0 |
/// | 2 | 0010 | 0 | 1 |
/// | 4 | 0100 | 0 | 0 |
/// | 6 | 0110 | 0 | 1 |
/// | 1 | 0001 | 1 | 0 |
/// | 5 | 0101 | 1 | 1 |
/// | 9 | 1001 | 1 | 0 |
/// | 13 | 1101 | 1 | 1 |
fn orientation(self) -> u8 {
let shift = 1 << (self.height() + 1);
(self.in_order_index() & shift != 0) as u8
}
/// The "direction" to travel to reach the parent node.
/// Returns +1 if the index is left of its parent.
/// Returns -1 if the index is right of its parent.
fn direction(self) -> i64 {
let scale = self.orientation() as i64 * 2 - 1; // Scale [0, 1] to [-1, 1];
-scale
}
}
impl Node for Position {
type Key = Bytes8;
fn height(&self) -> u32 {
Position::height(*self)
}
fn leaf_key(&self) -> Self::Key {
Position::leaf_index(*self).to_be_bytes()
}
fn is_leaf(&self) -> bool {
Position::is_leaf(*self)
}
fn is_node(&self) -> bool {
Position::is_node(*self)
}
}
impl ParentNode for Position {
type Error = Infallible;
fn left_child(&self) -> ChildResult<Self> {
Ok(Position::left_child(*self))
}
fn right_child(&self) -> ChildResult<Self> {
Ok(Position::right_child(*self))
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_from_in_order_index() {
assert_eq!(Position::from_in_order_index(0).in_order_index(), 0);
assert_eq!(Position::from_in_order_index(1).in_order_index(), 1);
assert_eq!(Position::from_in_order_index(!0u64).in_order_index(), !0u64);
}
#[test]
fn test_from_leaf_index() {
assert_eq!(Position::from_leaf_index(0).in_order_index(), 0);
assert_eq!(Position::from_leaf_index(1).in_order_index(), 2);
assert_eq!(Position::from_leaf_index((!0u64) >> 1).in_order_index(), !0u64 - 1);
}
#[test]
fn test_equality_returns_true_for_two_equal_positions() {
assert_eq!(Position(0), Position(0));
assert_eq!(Position::from_in_order_index(0), Position(0));
assert_eq!(Position::from_leaf_index(1), Position(2));
}
#[test]
fn test_equality_returns_false_for_two_unequal_positions() {
assert_ne!(Position(0), Position(1));
assert_ne!(Position::from_in_order_index(0), Position(1));
assert_ne!(Position::from_leaf_index(0), Position(2));
}
#[test]
fn test_height() {
assert_eq!(Position(0).height(), 0);
assert_eq!(Position(2).height(), 0);
assert_eq!(Position(4).height(), 0);
assert_eq!(Position(1).height(), 1);
assert_eq!(Position(5).height(), 1);
assert_eq!(Position(9).height(), 1);
assert_eq!(Position(3).height(), 2);
assert_eq!(Position(11).height(), 2);
assert_eq!(Position(19).height(), 2);
}
#[test]
fn test_sibling() {
assert_eq!(Position(0).sibling(), Position(2));
assert_eq!(Position(2).sibling(), Position(0));
assert_eq!(Position(1).sibling(), Position(5));
assert_eq!(Position(5).sibling(), Position(1));
assert_eq!(Position(3).sibling(), Position(11));
assert_eq!(Position(11).sibling(), Position(3));
}
#[test]
fn test_parent() {
assert_eq!(Position(0).parent(), Position(1));
assert_eq!(Position(2).parent(), Position(1));
assert_eq!(Position(1).parent(), Position(3));
assert_eq!(Position(5).parent(), Position(3));
assert_eq!(Position(3).parent(), Position(7));
assert_eq!(Position(11).parent(), Position(7));
}
#[test]
fn test_uncle() {
assert_eq!(Position(0).uncle(), Position(5));
assert_eq!(Position(2).uncle(), Position(5));
assert_eq!(Position(4).uncle(), Position(1));
assert_eq!(Position(6).uncle(), Position(1));
assert_eq!(Position(1).uncle(), Position(11));
assert_eq!(Position(5).uncle(), Position(11));
assert_eq!(Position(9).uncle(), Position(3));
assert_eq!(Position(13).uncle(), Position(3));
}
#[test]
fn test_left_child() {
assert_eq!(Position(7).left_child(), Position(3));
assert_eq!(Position(3).left_child(), Position(1));
assert_eq!(Position(1).left_child(), Position(0));
assert_eq!(Position(11).left_child(), Position(9));
assert_eq!(Position(9).left_child(), Position(8));
}
#[test]
fn test_right_child() {
assert_eq!(Position(7).right_child(), Position(11));
assert_eq!(Position(3).right_child(), Position(5));
assert_eq!(Position(1).right_child(), Position(2));
assert_eq!(Position(11).right_child(), Position(13));
assert_eq!(Position(9).right_child(), Position(10));
}
#[test]
fn test_is_leaf() {
assert_eq!(Position(0).is_leaf(), true);
assert_eq!(Position(2).is_leaf(), true);
assert_eq!(Position(4).is_leaf(), true);
assert_eq!(Position(6).is_leaf(), true);
assert_eq!(Position(1).is_leaf(), false);
assert_eq!(Position(5).is_leaf(), false);
assert_eq!(Position(9).is_leaf(), false);
assert_eq!(Position(13).is_leaf(), false);
}
#[test]
fn test_is_node() {
assert_eq!(Position(0).is_node(), false);
assert_eq!(Position(2).is_node(), false);
assert_eq!(Position(4).is_node(), false);
assert_eq!(Position(6).is_node(), false);
assert_eq!(Position(1).is_node(), true);
assert_eq!(Position(5).is_node(), true);
assert_eq!(Position(9).is_node(), true);
assert_eq!(Position(13).is_node(), true);
}
}