1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
use crate::common::{
node::{
ChildResult,
ParentNode,
},
path::{
Path,
Side,
},
};
/// # Path Iterator
///
/// A naturally arising property of binary trees is that a leaf index encodes
/// the unique path needed to traverse from the root of the tree to that leaf.
/// The index's binary representation can be read left to right as a sequence of
/// traversal instructions: a `0` bit means "descend left" and a `1` bit means
/// "descend right". By following the `x` bits composing the index, starting at
/// the root, descending to the left child at each `0`, descending to the right
/// child at each `1`, we arrive at the leaf position, having touched every node
/// position along the path formed by this index. Note that this algorithm does
/// not prescribe how to descend from one node to the next; it describes merely
/// the direction in which to descend at each step.
///
/// Alternatively, this can be interpreted as reading the index's most
/// significant bit (MSB) at an offset `n`: read the `n`th bit to the right of
/// the MSB. Here, `n` is a given step in the tree traversal, starting at 0, and
/// incrementing by 1 at each depth until the leaf is reached. The
/// traversal path is then the list of nodes calculated by traversing the tree
/// using the instruction (`0` or `1`) indicated at `x`<sub>`n`</sub>, where `x`
/// is the index in binary representation, and `n` is the offset for each digit
/// in `x` from the MSB.
///
/// Reversing this path gives us the path from the leaf to the root.
///
/// Imagine a 3-bit integer type `u3` underpinning a tree's leaf indices. 3 bits
/// give our tree a maximum height of 3, and a maximum number of leaf nodes
/// 2<sup>3</sup> = 8. For demonstration, internal nodes are numbered using
/// in-order indices (note that this would require an integer type with 4 bits
/// or more in practice). In-order indexing provides a deterministic way to
/// descend from one node to the next (see [Position](crate::common::Position)).
///
/// ```text
/// 07
/// / \
/// / \
/// / \
/// / \
/// / \
/// / \
/// 03 11
/// / \ / \
/// / \ / \
/// 01 05 09 13
/// / \ / \ / \ / \
/// In-order idx: 00 02 04 06 08 10 12 14
/// Leaf idx: 0 1 2 3 4 5 6 7
/// ```
///
/// Let us now find the path to leaf with index `6`. In the above diagram, this
/// is the seventh leaf in the leaf layer. A priori, we can see that the path
/// from the root to this leaf is represented by the following list of in-order
/// indices: `07, 11, 13, 12` (note that the leaf index that corresponds to the
/// in-order index `12` is `6`).
///
/// ```text
/// 0d6: u3 = 0b110
/// = Right, Right, Left
/// ```
///
/// Starting at the tree's root at index `07`, we can follow the instructions
/// encoded by the binary representation of leaf `6` (`0b110`). In combination
/// with our in-order index rules for descending nodes, we evaluate the
/// following:
///
/// 1. The first bit is `1`; move right from `07` to `11`.
/// 2. The next bit is `1`; move right from `11` to `13`.
/// 3. The next and final bit is `0`; move left from `13` to `12`.
///
/// We have arrived at the desired leaf position with in-order index `12` and
/// leaf index `6`. Indeed, following the instructions at each bit has produced
/// the same list of positional indices that we observed earlier: `07, 11, 13,
/// 12`.
pub struct PathIter<T: ParentNode> {
leaf_key: T::Key,
current: Option<(ChildResult<T>, ChildResult<T>)>,
current_offset: u32,
}
impl<T> PathIter<T>
where
T: ParentNode + Clone,
T::Key: Clone,
{
pub fn new(root: &T, leaf_key: &T::Key) -> Self {
let initial = (Ok(root.clone()), Ok(root.clone()));
#[rustfmt::skip]
// The initial offset from the most significant bit (MSB).
//
// The offset from the MSB indicates which bit to read when deducing the
// path from the root to the leaf. As we descend down the tree,
// increasing the traversal depth, we increment this offset and read the
// corresponding bit to get the next traversal instruction.
//
// In the general case, we start by reading the first bit of the path at
// offset 0. This happens when the path fills its allocated memory;
// e.g., a path of 256 instructions is encoded within a 256 bit
// allocation for the leaf key. This also means that the key size in
// bits is equal to the maximum height of the tree.
//
// In the case that the length of the path is less than the number of
// bits in the key, the initial offset from the MSB must be augmented to
// accommodate the shortened path. This occurs when the key is allocated
// with a larger address space to reduce collisions of node addresses.
//
// E.g,
// With an 8-bit key and heights 1 through 7:
//
// Height Depth
// 7 0 127 Offset = Bits - Height = 8 - 7 = 1
// / \
// / \
// ... ... ...
// / \
// / \
// 3 4 07 247 Offset = Bits - Height = 8 - 3 = 5
// / \ / \
// / \ ... \
// / \ \
// / \ \
// / \ \
// / \ \
// 2 5 03 11 251 Offset = Bits - Height = 8 - 2 = 6
// / \ / \ / \
// / \ / \ ... \
// 1 6 01 05 09 13 253 Offset = Bits - Height = 8 - 1 = 7
// / \ / \ / \ / \ / \
// 0 7 00 02 04 06 08 10 12 14 252 254
// 00 01 02 03 04 05 06 07 126 127
//
let initial_offset = T::key_size_bits().checked_sub(root.height())
.expect("Root height more than key size allows, ParentNode impl is incorrect");
Self {
leaf_key: leaf_key.clone(),
current: Some(initial),
current_offset: initial_offset,
}
}
}
impl<T> Iterator for PathIter<T>
where
T: ParentNode,
T::Key: Path,
{
type Item = (ChildResult<T>, ChildResult<T>);
fn next(&mut self) -> Option<Self::Item> {
let value = self.current.take();
if let Some((ref path_node, _)) = value {
match path_node {
Ok(path_node) if path_node.is_node() => {
let path = &self.leaf_key;
let instruction = path.get_instruction(self.current_offset);
self.current = instruction.map(|instruction| {
// get_instruction ensures current_offset is ok
#[allow(clippy::arithmetic_side_effects)]
{
self.current_offset += 1;
}
match instruction {
Side::Left => {
(path_node.left_child(), path_node.right_child())
}
Side::Right => {
(path_node.right_child(), path_node.left_child())
}
}
});
}
// Terminate the iterator if any of the following are true:
// - The path node is a leaf (traversal is complete)
// - The left or right child was not found and returned a ChildNotFound
// error
// - The left or right child returned any other error
_ => self.current = None,
}
}
value
}
}
pub trait AsPathIterator<T: ParentNode> {
fn as_path_iter(&self, leaf_key: &T::Key) -> PathIter<T>;
}
impl<T> AsPathIterator<T> for T
where
T: ParentNode + Clone,
T::Key: Clone,
{
fn as_path_iter(&self, leaf_key: &T::Key) -> PathIter<T> {
PathIter::new(self, leaf_key)
}
}
#[cfg(test)]
#[allow(
clippy::restriction,
clippy::cast_possible_wrap,
clippy::cast_sign_loss
)]
mod test {
use crate::common::{
node::{
ChildResult,
Node,
ParentNode,
},
AsPathIterator,
Bytes8,
};
use alloc::vec::Vec;
use core::convert::Infallible;
#[derive(Debug, Clone, PartialEq)]
struct TestNode {
value: u64,
}
impl TestNode {
pub fn in_order_index(&self) -> u64 {
self.value
}
pub fn leaf_index(&self) -> u64 {
assert!(self.is_leaf());
self.value / 2
}
pub fn from_in_order_index(index: u64) -> Self {
Self { value: index }
}
pub fn from_leaf_index(index: u64) -> Self {
Self { value: index * 2 }
}
pub fn height(&self) -> u32 {
(!self.in_order_index()).trailing_zeros()
}
pub fn is_leaf(&self) -> bool {
self.in_order_index() % 2 == 0
}
fn child(&self, direction: i64) -> Self {
assert!(!self.is_leaf());
let shift = 1 << (self.height() - 1);
let index = self.in_order_index() as i64 + shift * direction;
Self::from_in_order_index(index as u64)
}
}
impl Node for TestNode {
type Key = Bytes8;
fn height(&self) -> u32 {
TestNode::height(self)
}
#[allow(clippy::arithmetic_side_effects, clippy::cast_possible_truncation)] // const
fn key_size_bits() -> u32 {
core::mem::size_of::<Self::Key>() as u32 * 8
}
fn leaf_key(&self) -> Self::Key {
TestNode::leaf_index(self).to_be_bytes()
}
fn is_leaf(&self) -> bool {
TestNode::is_leaf(self)
}
fn is_node(&self) -> bool {
!TestNode::is_leaf(self)
}
}
impl ParentNode for TestNode {
type Error = Infallible;
fn left_child(&self) -> ChildResult<Self> {
Ok(TestNode::child(self, -1))
}
fn right_child(&self) -> ChildResult<Self> {
Ok(TestNode::child(self, 1))
}
}
#[test]
fn test_path_iter_returns_path() {
// 07
// / \
// / \
// / \
// / \
// / \
// / \
// 03 11
// / \ / \
// / \ / \
// 01 05 09 13
// / \ / \ / \ / \
// 00 02 04 06 08 10 12 14
// 00 01 02 03 04 05 06 07
//
type Node = TestNode;
let root = Node::from_in_order_index(7);
{
let leaf = Node::from_leaf_index(0);
let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
.as_path_iter(&leaf.leaf_key())
.map(|(path, side)| (path.unwrap(), side.unwrap()))
.unzip();
let expected_path = vec![
Node::from_in_order_index(7),
Node::from_in_order_index(3),
Node::from_in_order_index(1),
Node::from_leaf_index(0),
];
assert_eq!(path, expected_path);
}
{
let leaf = Node::from_leaf_index(1);
let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
.as_path_iter(&leaf.leaf_key())
.map(|(path, side)| (path.unwrap(), side.unwrap()))
.unzip();
let expected_path = vec![
Node::from_in_order_index(7),
Node::from_in_order_index(3),
Node::from_in_order_index(1),
Node::from_leaf_index(1),
];
assert_eq!(path, expected_path);
}
{
let leaf = Node::from_leaf_index(2);
let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
.as_path_iter(&leaf.leaf_key())
.map(|(path, side)| (path.unwrap(), side.unwrap()))
.unzip();
let expected_path = vec![
Node::from_in_order_index(7),
Node::from_in_order_index(3),
Node::from_in_order_index(5),
Node::from_leaf_index(2),
];
assert_eq!(path, expected_path);
}
{
let leaf = Node::from_leaf_index(3);
let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
.as_path_iter(&leaf.leaf_key())
.map(|(path, side)| (path.unwrap(), side.unwrap()))
.unzip();
let expected_path = vec![
Node::from_in_order_index(7),
Node::from_in_order_index(3),
Node::from_in_order_index(5),
Node::from_leaf_index(3),
];
assert_eq!(path, expected_path);
}
{
let leaf = Node::from_leaf_index(4);
let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
.as_path_iter(&leaf.leaf_key())
.map(|(path, side)| (path.unwrap(), side.unwrap()))
.unzip();
let expected_path = vec![
Node::from_in_order_index(7),
Node::from_in_order_index(11),
Node::from_in_order_index(9),
Node::from_leaf_index(4),
];
assert_eq!(path, expected_path);
}
{
let leaf = Node::from_leaf_index(5);
let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
.as_path_iter(&leaf.leaf_key())
.map(|(path, side)| (path.unwrap(), side.unwrap()))
.unzip();
let expected_path = vec![
Node::from_in_order_index(7),
Node::from_in_order_index(11),
Node::from_in_order_index(9),
Node::from_leaf_index(5),
];
assert_eq!(path, expected_path);
}
{
let leaf = Node::from_leaf_index(6);
let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
.as_path_iter(&leaf.leaf_key())
.map(|(path, side)| (path.unwrap(), side.unwrap()))
.unzip();
let expected_path = vec![
Node::from_in_order_index(7),
Node::from_in_order_index(11),
Node::from_in_order_index(13),
Node::from_leaf_index(6),
];
assert_eq!(path, expected_path);
}
{
let leaf = Node::from_leaf_index(7);
let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
.as_path_iter(&leaf.leaf_key())
.map(|(path, side)| (path.unwrap(), side.unwrap()))
.unzip();
let expected_path = vec![
Node::from_in_order_index(7),
Node::from_in_order_index(11),
Node::from_in_order_index(13),
Node::from_leaf_index(7),
];
assert_eq!(path, expected_path);
}
}
#[test]
fn test_path_iter_returns_side_nodes() {
// 07
// / \
// / \
// / \
// / \
// / \
// / \
// 03 11
// / \ / \
// / \ / \
// 01 05 09 13
// / \ / \ / \ / \
// 00 02 04 06 08 10 12 14
// 00 01 02 03 04 05 06 07
//
type Node = TestNode;
let root = Node::from_in_order_index(7); // 2^3 - 1
{
let leaf = Node::from_leaf_index(0);
let (_, side): (Vec<TestNode>, Vec<TestNode>) = root
.as_path_iter(&leaf.leaf_key())
.map(|(path, side)| (path.unwrap(), side.unwrap()))
.unzip();
let expected_side = vec![
Node::from_in_order_index(7),
Node::from_in_order_index(11), // Sibling of node 3
Node::from_in_order_index(5), // Sibling of node 1
Node::from_leaf_index(1), // Sibling of leaf 0
];
assert_eq!(side, expected_side);
}
{
let leaf = Node::from_leaf_index(1);
let (_, side): (Vec<TestNode>, Vec<TestNode>) = root
.as_path_iter(&leaf.leaf_key())
.map(|(path, side)| (path.unwrap(), side.unwrap()))
.unzip();
let expected_side = vec![
Node::from_in_order_index(7),
Node::from_in_order_index(11), // Sibling of node 3
Node::from_in_order_index(5), // Sibling of node 1
Node::from_leaf_index(0), // Sibling of leaf 1
];
assert_eq!(side, expected_side);
}
{
let leaf = Node::from_leaf_index(2);
let (_, side): (Vec<TestNode>, Vec<TestNode>) = root
.as_path_iter(&leaf.leaf_key())
.map(|(path, side)| (path.unwrap(), side.unwrap()))
.unzip();
let expected_side = vec![
Node::from_in_order_index(7),
Node::from_in_order_index(11), // Sibling of node 3
Node::from_in_order_index(1), // Sibling of node 5
Node::from_leaf_index(3), // Sibling of leaf 2
];
assert_eq!(side, expected_side);
}
{
let leaf = Node::from_leaf_index(3);
let (_, side): (Vec<TestNode>, Vec<TestNode>) = root
.as_path_iter(&leaf.leaf_key())
.map(|(path, side)| (path.unwrap(), side.unwrap()))
.unzip();
let expected_side = vec![
Node::from_in_order_index(7),
Node::from_in_order_index(11), // Sibling of node 3
Node::from_in_order_index(1), // Sibling of node 5
Node::from_leaf_index(2), // Sibling of leaf 3
];
assert_eq!(side, expected_side);
}
{
let leaf = Node::from_leaf_index(4);
let (_, side): (Vec<TestNode>, Vec<TestNode>) = root
.as_path_iter(&leaf.leaf_key())
.map(|(path, side)| (path.unwrap(), side.unwrap()))
.unzip();
let expected_side = vec![
Node::from_in_order_index(7),
Node::from_in_order_index(3), // Sibling of node 11
Node::from_in_order_index(13), // Sibling of node 9
Node::from_leaf_index(5), // Sibling of leaf 4
];
assert_eq!(side, expected_side);
}
{
let leaf = Node::from_leaf_index(5);
let (_, side): (Vec<TestNode>, Vec<TestNode>) = root
.as_path_iter(&leaf.leaf_key())
.map(|(path, side)| (path.unwrap(), side.unwrap()))
.unzip();
let expected_side = vec![
Node::from_in_order_index(7),
Node::from_in_order_index(3), // Sibling of node 11
Node::from_in_order_index(13), // Sibling of node 9
Node::from_leaf_index(4), // Sibling of leaf 5
];
assert_eq!(side, expected_side);
}
{
let leaf = Node::from_leaf_index(6);
let (_, side): (Vec<TestNode>, Vec<TestNode>) = root
.as_path_iter(&leaf.leaf_key())
.map(|(path, side)| (path.unwrap(), side.unwrap()))
.unzip();
let expected_side = vec![
Node::from_in_order_index(7),
Node::from_in_order_index(3), // Sibling of node 11
Node::from_in_order_index(9), // Sibling of node 13
Node::from_leaf_index(7), // Sibling of leaf 6
];
assert_eq!(side, expected_side);
}
{
let leaf = Node::from_leaf_index(7);
let (_, side): (Vec<TestNode>, Vec<TestNode>) = root
.as_path_iter(&leaf.leaf_key())
.map(|(path, side)| (path.unwrap(), side.unwrap()))
.unzip();
let expected_side = vec![
Node::from_in_order_index(7),
Node::from_in_order_index(3), // Sibling of node 11
Node::from_in_order_index(9), // Sibling of node 13
Node::from_leaf_index(6), // Sibling of leaf 7
];
assert_eq!(side, expected_side);
}
}
#[test]
fn test_path_iter_height_4() {
type Node = TestNode;
let root = Node::from_in_order_index(15); // 2^4 - 1
let leaf = Node::from_leaf_index(4); // 0b0100
let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
.as_path_iter(&leaf.leaf_key())
.map(|(path, side)| (path.unwrap(), side.unwrap()))
.unzip();
let expected_path = vec![
Node::from_in_order_index(15),
Node::from_in_order_index(7),
Node::from_in_order_index(11),
Node::from_in_order_index(9),
Node::from_in_order_index(8),
];
assert_eq!(path, expected_path);
}
#[test]
fn test_path_iter_height_8() {
type Node = TestNode;
let root = Node::from_in_order_index(255); // 2^8 - 1
let leaf = Node::from_leaf_index(61); // 0b00111101
let (path, _): (Vec<TestNode>, Vec<TestNode>) = root
.as_path_iter(&leaf.leaf_key())
.map(|(path, side)| (path.unwrap(), side.unwrap()))
.unzip();
let expected_path = vec![
Node::from_in_order_index(255),
Node::from_in_order_index(127),
Node::from_in_order_index(63),
Node::from_in_order_index(95),
Node::from_in_order_index(111),
Node::from_in_order_index(119),
Node::from_in_order_index(123),
Node::from_in_order_index(121),
Node::from_leaf_index(61),
];
assert_eq!(path, expected_path);
}
#[test]
fn test_path_iter_returns_root_root_when_root_is_leaf() {
type Node = TestNode;
let root = Node::from_in_order_index(0);
let leaf = Node::from_leaf_index(0);
let (path, side): (Vec<TestNode>, Vec<TestNode>) = root
.as_path_iter(&leaf.leaf_key())
.map(|(path, side)| (path.unwrap(), side.unwrap()))
.unzip();
let expected_path = vec![Node::from_in_order_index(0)];
let expected_side = vec![Node::from_in_order_index(0)];
assert_eq!(path, expected_path);
assert_eq!(side, expected_side);
}
}