1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
use crate::{
    common::{
        Bytes32,
        StorageMap,
    },
    sparse::{
        self,
        merkle_tree::MerkleTreeKey,
        proof::Proof,
        Primitive,
    },
    storage::{
        Mappable,
        StorageInspect,
        StorageMutate,
    },
};
use alloc::{
    borrow::Cow,
    vec::Vec,
};

/// The table of the Sparse Merkle tree's nodes. [`MerkleTree`] works with it as a sparse
/// merkle tree, where the storage key is `Bytes32` and the value is the
/// [`Buffer`](crate::sparse::Buffer) (raw presentation of the
/// [`Node`](crate::sparse::Node)).
#[derive(Debug)]
pub struct NodesTable;

impl Mappable for NodesTable {
    type Key = Self::OwnedKey;
    type OwnedKey = Bytes32;
    type OwnedValue = Primitive;
    type Value = Self::OwnedValue;
}

type Storage = StorageMap<NodesTable>;
type SparseMerkleTree = sparse::MerkleTree<NodesTable, Storage>;

#[derive(Debug)]
pub struct MerkleTree {
    tree: SparseMerkleTree,
}

impl MerkleTree {
    pub fn new() -> Self {
        Self {
            tree: SparseMerkleTree::new(Storage::new()),
        }
    }

    /// Build a sparse Merkle tree from a set of key-value pairs. This is
    /// equivalent to creating an empty sparse Merkle tree and sequentially
    /// calling [update](Self::update) for each key-value pair. This constructor
    /// is more performant than calling individual sequential updates and is the
    /// preferred approach when the key-values are known upfront. Leaves can be
    /// appended to the returned tree using `update` to further accumulate leaf
    /// data.
    pub fn from_set<I, D>(set: I) -> Self
    where
        I: Iterator<Item = (MerkleTreeKey, D)>,
        D: AsRef<[u8]>,
    {
        let tree = SparseMerkleTree::from_set(Storage::new(), set)
            .expect("`Storage` can't return error");
        Self { tree }
    }

    /// Calculate the sparse Merkle root from a set of key-value pairs. This is
    /// similar to constructing a new tree from a set of key-value pairs using
    /// [from_set](Self::from_set), except this method returns only the root; it
    /// does not write to storage nor return a sparse Merkle tree instance. It
    /// is equivalent to calling `from_set(..)`, followed by `root()`, but does
    /// not incur the overhead of storage writes. This can be helpful when we
    /// know all the key-values in the set upfront and we will not need to
    /// update the set in the future.
    pub fn root_from_set<I, D>(set: I) -> Bytes32
    where
        I: Iterator<Item = (MerkleTreeKey, D)>,
        D: AsRef<[u8]>,
    {
        #[derive(Default)]
        struct EmptyStorage;

        impl StorageInspect<NodesTable> for EmptyStorage {
            type Error = core::convert::Infallible;

            fn get(&self, _: &Bytes32) -> Result<Option<Cow<Primitive>>, Self::Error> {
                Ok(None)
            }

            fn contains_key(&self, _: &Bytes32) -> Result<bool, Self::Error> {
                Ok(false)
            }
        }

        impl StorageMutate<NodesTable> for EmptyStorage {
            fn insert(
                &mut self,
                _: &Bytes32,
                _: &Primitive,
            ) -> Result<Option<Primitive>, Self::Error> {
                Ok(None)
            }

            fn remove(&mut self, _: &Bytes32) -> Result<Option<Primitive>, Self::Error> {
                Ok(None)
            }
        }

        let tree = sparse::MerkleTree::<NodesTable, _>::from_set(EmptyStorage, set)
            .expect("`Storage` can't return error");
        tree.root()
    }

    /// Calculate the sparse Merkle root as well as all nodes in the Merkle tree
    /// from a set of key-value pairs. This is similar to constructing a new
    /// tree from a set of key-value pairs using [from_set](Self::from_set),
    /// except this method returns only the root and the list of leaves and
    /// nodes in the tree; it does not return a sparse Merkle tree instance.
    /// This can be helpful when we know all the key-values in the set upfront
    /// and we need to defer storage writes, such as expensive database inserts,
    /// for batch operations later in the process.
    pub fn nodes_from_set<I, D>(set: I) -> (Bytes32, Vec<(Bytes32, Primitive)>)
    where
        I: Iterator<Item = (MerkleTreeKey, D)>,
        D: AsRef<[u8]>,
    {
        #[derive(Default)]
        struct VectorStorage {
            storage: Vec<(Bytes32, Primitive)>,
        }

        impl StorageInspect<NodesTable> for VectorStorage {
            type Error = core::convert::Infallible;

            fn get(&self, _: &Bytes32) -> Result<Option<Cow<Primitive>>, Self::Error> {
                unimplemented!("Read operation is not supported")
            }

            fn contains_key(&self, _: &Bytes32) -> Result<bool, Self::Error> {
                unimplemented!("Read operation is not supported")
            }
        }

        impl StorageMutate<NodesTable> for VectorStorage {
            fn insert(
                &mut self,
                key: &Bytes32,
                value: &Primitive,
            ) -> Result<Option<Primitive>, Self::Error> {
                self.storage.push((*key, *value));
                Ok(None)
            }

            fn remove(&mut self, _: &Bytes32) -> Result<Option<Primitive>, Self::Error> {
                unimplemented!("Remove operation is not supported")
            }
        }

        let tree =
            sparse::MerkleTree::<NodesTable, _>::from_set(VectorStorage::default(), set)
                .expect("`Storage` can't return error");
        let root = tree.root();
        let nodes = tree.into_storage().storage;

        (root, nodes)
    }

    pub fn update(&mut self, key: MerkleTreeKey, data: &[u8]) {
        let _ = self.tree.update(key, data);
    }

    pub fn delete(&mut self, key: MerkleTreeKey) {
        let _ = self.tree.delete(key);
    }

    pub fn root(&self) -> Bytes32 {
        self.tree.root()
    }

    pub fn generate_proof(&self, key: &MerkleTreeKey) -> Option<Proof> {
        self.tree.generate_proof(key).ok()
    }
}

impl Default for MerkleTree {
    fn default() -> Self {
        Self::new()
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::common::sum;

    fn key(data: &[u8]) -> MerkleTreeKey {
        MerkleTreeKey::new_without_hash(sum(data))
    }

    #[test]
    fn test_empty_root() {
        let tree = MerkleTree::new();
        let root = tree.root();
        let expected_root =
            "0000000000000000000000000000000000000000000000000000000000000000";
        assert_eq!(hex::encode(root), expected_root);
    }

    #[test]
    fn test_update_1() {
        let mut tree = MerkleTree::new();

        tree.update(key(b"\x00\x00\x00\x00"), b"DATA");

        let root = tree.root();
        let expected_root =
            "39f36a7cb4dfb1b46f03d044265df6a491dffc1034121bc1071a34ddce9bb14b";
        assert_eq!(hex::encode(root), expected_root);
    }

    #[test]
    fn test_update_2() {
        let mut tree = MerkleTree::new();

        tree.update(key(b"\x00\x00\x00\x00"), b"DATA");
        tree.update(key(b"\x00\x00\x00\x01"), b"DATA");

        let root = tree.root();
        let expected_root =
            "8d0ae412ca9ca0afcb3217af8bcd5a673e798bd6fd1dfacad17711e883f494cb";
        assert_eq!(hex::encode(root), expected_root);
    }

    #[test]
    fn test_update_3() {
        let mut tree = MerkleTree::new();

        tree.update(key(b"\x00\x00\x00\x00"), b"DATA");
        tree.update(key(b"\x00\x00\x00\x01"), b"DATA");
        tree.update(key(b"\x00\x00\x00\x02"), b"DATA");

        let root = tree.root();
        let expected_root =
            "52295e42d8de2505fdc0cc825ff9fead419cbcf540d8b30c7c4b9c9b94c268b7";
        assert_eq!(hex::encode(root), expected_root);
    }

    #[test]
    fn test_update_1_delete_1() {
        let mut tree = MerkleTree::new();

        tree.update(key(b"\x00\x00\x00\x00"), b"DATA");
        tree.delete(key(b"\x00\x00\x00\x00"));

        let root = tree.root();
        let expected_root =
            "0000000000000000000000000000000000000000000000000000000000000000";
        assert_eq!(hex::encode(root), expected_root);
    }

    #[test]
    fn test_update_2_delete_1() {
        let mut tree = MerkleTree::new();

        tree.update(key(b"\x00\x00\x00\x00"), b"DATA");
        tree.update(key(b"\x00\x00\x00\x01"), b"DATA");
        tree.delete(key(b"\x00\x00\x00\x01"));

        let root = tree.root();
        let expected_root =
            "39f36a7cb4dfb1b46f03d044265df6a491dffc1034121bc1071a34ddce9bb14b";
        assert_eq!(hex::encode(root), expected_root);
    }
}