1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
use crate::{
    StorageSlot,
    Transaction,
    ValidityError,
};

use derivative::Derivative;
use fuel_crypto::Hasher;
use fuel_merkle::{
    binary::root_calculator::MerkleRootCalculator as BinaryMerkleTree,
    sparse::{
        in_memory::MerkleTree as SparseMerkleTree,
        MerkleTreeKey,
    },
};
use fuel_types::{
    fmt_truncated_hex,
    Bytes32,
    ContractId,
    Salt,
};

use alloc::vec::Vec;
use core::iter;

/// The target size of Merkle tree leaves in bytes. Contract code will will be divided
/// into chunks of this size and pushed to the Merkle tree.
///
/// See https://github.com/FuelLabs/fuel-specs/blob/master/src/identifiers/contract-id.md
const LEAF_SIZE: usize = 16 * 1024;
/// In the event that contract code cannot be divided evenly by the `LEAF_SIZE`, the
/// remainder must be padded to the nearest multiple of 8 bytes. Padding is achieved by
/// repeating the `PADDING_BYTE`.
const PADDING_BYTE: u8 = 0u8;
const MULTIPLE: usize = 8;

#[derive(Default, Derivative, Clone, PartialEq, Eq, Hash)]
#[derivative(Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[derive(fuel_types::canonical::Deserialize, fuel_types::canonical::Serialize)]
/// Deployable representation of a contract code.
pub struct Contract(
    #[derivative(Debug(format_with = "fmt_truncated_hex::<16>"))] Vec<u8>,
);

impl Contract {
    /// The `ContractId` of the contract with empty bytecode, zero salt, and empty state
    /// root.
    pub const EMPTY_CONTRACT_ID: ContractId = ContractId::new([
        55, 187, 13, 108, 165, 51, 58, 230, 74, 109, 215, 229, 33, 69, 82, 120, 81, 4,
        85, 54, 172, 30, 84, 115, 226, 164, 0, 99, 103, 189, 154, 243,
    ]);

    /// Number of bytes in the contract's bytecode
    pub fn len(&self) -> usize {
        self.0.len()
    }

    /// Check if the contract's bytecode is empty
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    /// Calculate the code root of the contract, using [`Self::root_from_code`].
    pub fn root(&self) -> Bytes32 {
        Self::root_from_code(self)
    }

    /// Calculate the code root from a contract.
    ///
    /// <https://github.com/FuelLabs/fuel-specs/blob/master/src/identifiers/contract-id.md>
    pub fn root_from_code<B>(bytes: B) -> Bytes32
    where
        B: AsRef<[u8]>,
    {
        let mut tree = BinaryMerkleTree::new();
        bytes.as_ref().chunks(LEAF_SIZE).for_each(|leaf| {
            // If the bytecode is not a multiple of LEAF_SIZE, the final leaf
            // should be zero-padded rounding up to the nearest multiple of 8
            // bytes.
            let len = leaf.len();
            if len == LEAF_SIZE || len % MULTIPLE == 0 {
                tree.push(leaf);
            } else {
                let padding_size = len.next_multiple_of(MULTIPLE);
                let mut padded_leaf = [PADDING_BYTE; LEAF_SIZE];
                padded_leaf[0..len].clone_from_slice(leaf);
                tree.push(padded_leaf[..padding_size].as_ref());
            }
        });

        tree.root().into()
    }

    /// Calculate the root of the initial storage slots for this contract
    pub fn initial_state_root<'a, I>(storage_slots: I) -> Bytes32
    where
        I: Iterator<Item = &'a StorageSlot>,
    {
        let storage_slots = storage_slots
            .map(|slot| (*slot.key(), slot.value()))
            .map(|(key, data)| (MerkleTreeKey::new(key), data));
        let root = SparseMerkleTree::root_from_set(storage_slots);
        root.into()
    }

    /// The default state root value without any entries
    pub fn default_state_root() -> Bytes32 {
        Self::initial_state_root(iter::empty())
    }

    /// Calculate and return the contract id, provided a salt, code root and state root.
    ///
    /// <https://github.com/FuelLabs/fuel-specs/blob/master/src/identifiers/contract-id.md>
    pub fn id(&self, salt: &Salt, root: &Bytes32, state_root: &Bytes32) -> ContractId {
        let mut hasher = Hasher::default();

        hasher.input(ContractId::SEED);
        hasher.input(salt);
        hasher.input(root);
        hasher.input(state_root);

        ContractId::from(*hasher.digest())
    }
}

impl From<Vec<u8>> for Contract {
    fn from(c: Vec<u8>) -> Self {
        Self(c)
    }
}

impl From<&[u8]> for Contract {
    fn from(c: &[u8]) -> Self {
        Self(c.into())
    }
}

impl From<&mut [u8]> for Contract {
    fn from(c: &mut [u8]) -> Self {
        Self(c.into())
    }
}

impl From<Contract> for Vec<u8> {
    fn from(c: Contract) -> Vec<u8> {
        c.0
    }
}

impl AsRef<[u8]> for Contract {
    fn as_ref(&self) -> &[u8] {
        self.0.as_ref()
    }
}

impl AsMut<[u8]> for Contract {
    fn as_mut(&mut self) -> &mut [u8] {
        self.0.as_mut()
    }
}

impl TryFrom<&Transaction> for Contract {
    type Error = ValidityError;

    fn try_from(tx: &Transaction) -> Result<Self, Self::Error> {
        match tx {
            Transaction::Create(create) => TryFrom::try_from(create),
            _ => {
                Err(ValidityError::TransactionOutputContainsContractCreated { index: 0 })
            }
        }
    }
}

#[allow(clippy::arithmetic_side_effects, clippy::cast_possible_truncation)]
#[cfg(test)]
mod tests {
    use super::*;
    use fuel_types::{
        bytes::WORD_SIZE,
        Bytes64,
    };
    use itertools::Itertools;
    use quickcheck_macros::quickcheck;
    use rand::{
        rngs::StdRng,
        RngCore,
        SeedableRng,
    };
    use rstest::rstest;

    // safe-guard against breaking changes to the code root calculation for valid
    // sizes of bytecode (multiples of instruction size in bytes (half-word))
    #[rstest]
    fn code_root_snapshot(
        #[values(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100)] instructions: usize,
    ) {
        let mut rng = StdRng::seed_from_u64(100);
        let code_len = instructions * WORD_SIZE / 2;
        let mut code = alloc::vec![0u8; code_len];
        rng.fill_bytes(code.as_mut_slice());

        // compute root
        let root = Contract::root_from_code(code);

        // take root snapshot
        insta::with_settings!(
            {snapshot_suffix => format!("instructions-{instructions}")},
            {
                insta::assert_debug_snapshot!(root);
            }
        );
    }

    // validate code_root is always equivalent to contract.root
    #[quickcheck]
    fn contract_root_matches_code_root(instructions: u8) -> bool {
        let mut rng = StdRng::seed_from_u64(100);
        let code_len = instructions as usize * WORD_SIZE / 2;
        let mut code = alloc::vec![0u8; code_len];
        rng.fill_bytes(code.as_mut_slice());
        let contract = Contract::from(code.clone());
        // compute root
        let code_root = Contract::root_from_code(code);
        let contract_root = contract.root();
        code_root == contract_root
    }

    #[rstest]
    fn state_root_snapshot(
        #[values(Vec::new(), vec![Bytes64::new([1u8; 64])])] state_slot_bytes: Vec<
            Bytes64,
        >,
    ) {
        let slots: Vec<StorageSlot> =
            state_slot_bytes.iter().map(Into::into).collect_vec();
        let state_root = Contract::initial_state_root(&mut slots.iter());
        // take root snapshot
        insta::with_settings!(
            {snapshot_suffix => format!("state-root-{}", slots.len())},
            {
                insta::assert_debug_snapshot!(state_root);
            }
        );
    }

    #[test]
    fn default_state_root_snapshot() {
        let default_root = Contract::default_state_root();
        insta::assert_debug_snapshot!(default_root);
    }

    #[test]
    fn multi_leaf_state_root_snapshot() {
        let mut rng = StdRng::seed_from_u64(0xF00D);
        // 5 full leaves and a partial 6th leaf with 4 bytes of data
        let partial_leaf_size = 4;
        let code_len = 5 * LEAF_SIZE + partial_leaf_size;
        let mut code = alloc::vec![0u8; code_len];
        rng.fill_bytes(code.as_mut_slice());

        // compute root
        let root = Contract::root_from_code(code);

        // take root snapshot
        insta::with_settings!(
            {snapshot_suffix => "multi-leaf-state-root"},
            {
                insta::assert_debug_snapshot!(root);
            }
        );
    }

    #[rstest]
    #[case(0)]
    #[case(1)]
    #[case(8)]
    #[case(500)]
    #[case(1000)]
    #[case(1024)]
    #[case(1025)]
    fn partial_leaf_state_root(#[case] partial_leaf_size: usize) {
        let mut rng = StdRng::seed_from_u64(0xF00D);
        let code_len = partial_leaf_size;
        let mut code = alloc::vec![0u8; code_len];
        rng.fill_bytes(code.as_mut_slice());

        // Compute root
        let root = Contract::root_from_code(code.clone());

        // Compute expected root
        let expected_root = {
            let mut tree = BinaryMerkleTree::new();

            // Push partial leaf with manual padding.
            // We start by generating an n-byte array, where n is the code
            // length rounded to the nearest multiple of 8, and each byte is the
            // PADDING_BYTE by default. The leaf is generated by copying the
            // remaining data bytes into the start of this array.
            let sz = partial_leaf_size.next_multiple_of(8);
            if sz > 0 {
                let mut padded_leaf = vec![PADDING_BYTE; sz];
                padded_leaf[0..code_len].clone_from_slice(&code);
                tree.push(&padded_leaf);
            }
            tree.root().into()
        };

        assert_eq!(root, expected_root);
    }

    #[rstest]
    #[case(0)]
    #[case(1)]
    #[case(8)]
    #[case(500)]
    #[case(1000)]
    #[case(1024)]
    #[case(1025)]
    fn multi_leaf_state_root(#[case] partial_leaf_size: usize) {
        let mut rng = StdRng::seed_from_u64(0xF00D);
        // 3 full leaves and a partial 4th leaf
        let code_len = 3 * LEAF_SIZE + partial_leaf_size;
        let mut code = alloc::vec![0u8; code_len];
        rng.fill_bytes(code.as_mut_slice());

        // Compute root
        let root = Contract::root_from_code(code.clone());

        // Compute expected root
        let expected_root = {
            let mut tree = BinaryMerkleTree::new();

            let leaves = code.chunks(LEAF_SIZE).collect::<Vec<_>>();
            tree.push(leaves[0]);
            tree.push(leaves[1]);
            tree.push(leaves[2]);

            // Push partial leaf with manual padding.
            // We start by generating an n-byte array, where n is the code
            // length rounded to the nearest multiple of 8, and each byte is the
            // PADDING_BYTE by default. The leaf is generated by copying the
            // remaining data bytes into the start of this array.
            let sz = partial_leaf_size.next_multiple_of(8);
            if sz > 0 {
                let mut padded_leaf = vec![PADDING_BYTE; sz];
                padded_leaf[0..partial_leaf_size].clone_from_slice(leaves[3]);
                tree.push(&padded_leaf);
            }
            tree.root().into()
        };

        assert_eq!(root, expected_root);
    }

    #[test]
    fn empty_contract_id() {
        let contract = Contract::from(vec![]);
        let salt = Salt::zeroed();
        let root = contract.root();
        let state_root = Contract::default_state_root();

        let calculated_id = contract.id(&salt, &root, &state_root);
        assert_eq!(calculated_id, Contract::EMPTY_CONTRACT_ID)
    }
}