fuel_types/
canonical.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
//! Canonical serialization and deserialization of Fuel types.
//!
//! This module provides the `Serialize` and `Deserialize` traits, which
//! allow for automatic serialization and deserialization of Fuel types.

#![allow(unsafe_code)]

#[cfg(feature = "alloc")]
use alloc::vec::Vec;
use core::fmt;

use core::mem::MaybeUninit;
pub use fuel_derive::{
    Deserialize,
    Serialize,
};

/// Error when serializing or deserializing.
#[derive(Debug, Eq, PartialEq)]
#[non_exhaustive]
pub enum Error {
    /// The buffer is to short for writing or reading.
    BufferIsTooShort,
    /// Got unknown enum's discriminant.
    UnknownDiscriminant,
    /// Struct prefix (set with `#[canonical(prefix = ...)]`) was invalid.
    InvalidPrefix,
    /// Allocation too large to be correct.
    AllocationLimit,
    /// Unknown error.
    Unknown(&'static str),
}

impl Error {
    pub(crate) fn as_str(&self) -> &'static str {
        match self {
            Error::BufferIsTooShort => "buffer is too short",
            Error::UnknownDiscriminant => "unknown discriminant",
            Error::InvalidPrefix => {
                "prefix set with #[canonical(prefix = ...)] was invalid"
            }
            Error::AllocationLimit => "allocation too large",
            Error::Unknown(str) => str,
        }
    }
}

impl fmt::Display for Error {
    /// Shows a human-readable description of the `Error`.
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.write_str(self.as_str())
    }
}

/// Allows writing of data.
pub trait Output {
    /// Write bytes to the output buffer.
    fn write(&mut self, bytes: &[u8]) -> Result<(), Error>;

    /// Write a single byte to the output buffer.
    fn push_byte(&mut self, byte: u8) -> Result<(), Error> {
        self.write(&[byte])
    }
}

/// Allows serialize the type into the `Output`.
/// https://github.com/FuelLabs/fuel-specs/blob/master/specs/protocol/tx_format.md#transaction
pub trait Serialize {
    /// !INTERNAL USAGE ONLY!
    /// Array of bytes that are now aligned by themselves.
    #[doc(hidden)]
    const UNALIGNED_BYTES: bool = false;

    /// Size of the static part of the serialized object, in bytes.
    /// Saturates to usize::MAX on overflow.
    fn size_static(&self) -> usize;

    /// Size of the dynamic part, in bytes.
    /// Saturates to usize::MAX on overflow.
    fn size_dynamic(&self) -> usize;

    /// Total size of the serialized object, in bytes.
    /// Saturates to usize::MAX on overflow.
    fn size(&self) -> usize {
        self.size_static().saturating_add(self.size_dynamic())
    }

    /// Encodes `Self` into the `buffer`.
    ///
    /// It is better to not implement this function directly, instead implement
    /// `encode_static` and `encode_dynamic`.
    fn encode<O: Output + ?Sized>(&self, buffer: &mut O) -> Result<(), Error> {
        self.encode_static(buffer)?;
        self.encode_dynamic(buffer)
    }

    /// Encodes staticly-sized part of `Self`.
    fn encode_static<O: Output + ?Sized>(&self, buffer: &mut O) -> Result<(), Error>;

    /// Encodes dynamically-sized part of `Self`.
    /// The default implementation does nothing. Dynamically-sized contains should
    /// override this.
    fn encode_dynamic<O: Output + ?Sized>(&self, _buffer: &mut O) -> Result<(), Error> {
        Ok(())
    }

    /// Encodes `Self` into bytes vector. Required known size.
    #[cfg(feature = "alloc")]
    fn to_bytes(&self) -> Vec<u8> {
        let mut vec = Vec::with_capacity(self.size());
        self.encode(&mut vec).expect("Unable to encode self");
        vec
    }
}

/// Allows reading of data into a slice.
pub trait Input {
    /// Returns the remaining length of the input data.
    fn remaining(&mut self) -> usize;

    /// Peek the exact number of bytes required to fill the given buffer.
    fn peek(&self, buf: &mut [u8]) -> Result<(), Error>;

    /// Read the exact number of bytes required to fill the given buffer.
    fn read(&mut self, buf: &mut [u8]) -> Result<(), Error>;

    /// Peek a single byte from the input.
    fn peek_byte(&mut self) -> Result<u8, Error> {
        let mut buf = [0u8];
        self.peek(&mut buf[..])?;
        Ok(buf[0])
    }

    /// Read a single byte from the input.
    fn read_byte(&mut self) -> Result<u8, Error> {
        let mut buf = [0u8];
        self.read(&mut buf[..])?;
        Ok(buf[0])
    }

    /// Skips next `n` bytes.
    fn skip(&mut self, n: usize) -> Result<(), Error>;
}

/// Allows deserialize the type from the `Input`.
/// https://github.com/FuelLabs/fuel-specs/blob/master/specs/protocol/tx_format.md#transaction
pub trait Deserialize: Sized {
    /// !INTERNAL USAGE ONLY!
    /// Array of bytes that are now aligned by themselves.
    #[doc(hidden)]
    const UNALIGNED_BYTES: bool = false;

    /// Decodes `Self` from the `buffer`.
    ///
    /// It is better to not implement this function directly, instead implement
    /// `decode_static` and `decode_dynamic`.
    fn decode<I: Input + ?Sized>(buffer: &mut I) -> Result<Self, Error> {
        let mut object = Self::decode_static(buffer)?;
        object.decode_dynamic(buffer)?;
        Ok(object)
    }

    /// Decodes static part of `Self` from the `buffer`.
    fn decode_static<I: Input + ?Sized>(buffer: &mut I) -> Result<Self, Error>;

    /// Decodes dynamic part of the information from the `buffer` to fill `Self`.
    /// The default implementation does nothing. Dynamically-sized contains should
    /// override this.
    fn decode_dynamic<I: Input + ?Sized>(
        &mut self,
        _buffer: &mut I,
    ) -> Result<(), Error> {
        Ok(())
    }

    /// Helper method for deserializing `Self` from bytes.
    fn from_bytes(mut buffer: &[u8]) -> Result<Self, Error> {
        Self::decode(&mut buffer)
    }
}

/// The data of each field should be aligned to 64 bits.
pub const ALIGN: usize = 8;

/// The number of padding bytes required to align the given length correctly.
#[allow(clippy::arithmetic_side_effects)] // Safety: (a % b) < b
const fn alignment_bytes(len: usize) -> usize {
    let modulo = len % ALIGN;
    if modulo == 0 {
        0
    } else {
        ALIGN - modulo
    }
}

/// Size after alignment. Saturates on overflow.
pub const fn aligned_size(len: usize) -> usize {
    len.saturating_add(alignment_bytes(len))
}

macro_rules! impl_for_primitives {
    ($t:ident, $unpadded:literal) => {
        impl Serialize for $t {
            const UNALIGNED_BYTES: bool = $unpadded;

            #[inline(always)]
            fn size_static(&self) -> usize {
                aligned_size(::core::mem::size_of::<$t>())
            }

            #[inline(always)]
            fn size_dynamic(&self) -> usize {
                0
            }

            #[inline(always)]
            fn encode_static<O: Output + ?Sized>(
                &self,
                buffer: &mut O,
            ) -> Result<(), Error> {
                // Primitive types are zero-padded on left side to a 8-byte boundary.
                // The resulting value is always well-aligned.
                let bytes = <$t>::to_be_bytes(*self);
                for _ in 0..alignment_bytes(bytes.len()) {
                    // Zero-pad
                    buffer.push_byte(0)?;
                }
                buffer.write(bytes.as_ref())?;
                Ok(())
            }
        }

        impl Deserialize for $t {
            const UNALIGNED_BYTES: bool = $unpadded;

            fn decode_static<I: Input + ?Sized>(buffer: &mut I) -> Result<Self, Error> {
                let mut asset = [0u8; ::core::mem::size_of::<$t>()];
                buffer.skip(alignment_bytes(asset.len()))?; // Skip zero-padding
                buffer.read(asset.as_mut())?;
                Ok(<$t>::from_be_bytes(asset))
            }
        }
    };
}

impl_for_primitives!(u8, true);
impl_for_primitives!(u16, false);
impl_for_primitives!(u32, false);
impl_for_primitives!(usize, false);
impl_for_primitives!(u64, false);
impl_for_primitives!(u128, false);

// Empty tuple `()`, i.e. the unit type takes up no space.
impl Serialize for () {
    fn size_static(&self) -> usize {
        0
    }

    #[inline(always)]
    fn size_dynamic(&self) -> usize {
        0
    }

    #[inline(always)]
    fn encode_static<O: Output + ?Sized>(&self, _buffer: &mut O) -> Result<(), Error> {
        Ok(())
    }
}

impl Deserialize for () {
    fn decode_static<I: Input + ?Sized>(_buffer: &mut I) -> Result<Self, Error> {
        Ok(())
    }
}

/// To protect against malicious large inputs, vector size is limited when decoding.
pub const VEC_DECODE_LIMIT: usize = 100 * (1 << 20); // 100 MiB

#[cfg(feature = "alloc")]
impl<T: Serialize> Serialize for Vec<T> {
    fn size_static(&self) -> usize {
        8
    }

    #[inline(always)]
    fn size_dynamic(&self) -> usize {
        if T::UNALIGNED_BYTES {
            aligned_size(self.len())
        } else {
            aligned_size(
                self.iter()
                    .map(|e| e.size())
                    .reduce(usize::saturating_add)
                    .unwrap_or_default(),
            )
        }
    }

    #[inline(always)]
    // Encode only the size of the vector. Elements will be encoded in the
    // `encode_dynamic` method.
    fn encode_static<O: Output + ?Sized>(&self, buffer: &mut O) -> Result<(), Error> {
        if self.len() > VEC_DECODE_LIMIT {
            return Err(Error::AllocationLimit)
        }
        let len: u64 = self.len().try_into().expect("msg.len() > u64::MAX");
        len.encode(buffer)
    }

    fn encode_dynamic<O: Output + ?Sized>(&self, buffer: &mut O) -> Result<(), Error> {
        // Bytes - Vec<u8> it a separate case without padding for each element.
        // It should padded at the end if is not % ALIGN
        if T::UNALIGNED_BYTES {
            // SAFETY: `UNALIGNED_BYTES` only set for `u8`.
            let bytes = unsafe { ::core::mem::transmute::<&Vec<T>, &Vec<u8>>(self) };
            buffer.write(bytes.as_slice())?;
            for _ in 0..alignment_bytes(self.len()) {
                buffer.push_byte(0)?;
            }
        } else {
            for e in self.iter() {
                e.encode(buffer)?;
            }
        }
        Ok(())
    }
}

#[cfg(feature = "alloc")]
impl<T: Deserialize> Deserialize for Vec<T> {
    // Decode only the capacity of the vector. Elements will be decoded in the
    // `decode_dynamic` method. The capacity is needed for iteration there.
    fn decode_static<I: Input + ?Sized>(buffer: &mut I) -> Result<Self, Error> {
        let cap = u64::decode(buffer)?;
        let cap: usize = cap.try_into().map_err(|_| Error::AllocationLimit)?;
        if cap > VEC_DECODE_LIMIT {
            return Err(Error::AllocationLimit)
        }
        Ok(Vec::with_capacity(cap))
    }

    fn decode_dynamic<I: Input + ?Sized>(&mut self, buffer: &mut I) -> Result<(), Error> {
        for _ in 0..self.capacity() {
            // Bytes - Vec<u8> it a separate case without unpadding for each element.
            // It should unpadded at the end if is not % ALIGN
            if T::UNALIGNED_BYTES {
                let byte = buffer.read_byte()?;
                // SAFETY: `UNALIGNED_BYTES` implemented set for `u8`.
                let _self =
                    unsafe { ::core::mem::transmute::<&mut Vec<T>, &mut Vec<u8>>(self) };
                _self.push(byte);
            } else {
                self.push(T::decode(buffer)?);
            }
        }

        if T::UNALIGNED_BYTES {
            buffer.skip(alignment_bytes(self.capacity()))?;
        }

        Ok(())
    }
}

impl<const N: usize, T: Serialize> Serialize for [T; N] {
    fn size_static(&self) -> usize {
        if T::UNALIGNED_BYTES {
            aligned_size(N)
        } else {
            aligned_size(
                self.iter()
                    .map(|e| e.size_static())
                    .reduce(usize::saturating_add)
                    .unwrap_or_default(),
            )
        }
    }

    #[inline(always)]
    fn size_dynamic(&self) -> usize {
        if T::UNALIGNED_BYTES {
            0
        } else {
            aligned_size(
                self.iter()
                    .map(|e| e.size_dynamic())
                    .reduce(usize::saturating_add)
                    .unwrap_or_default(),
            )
        }
    }

    #[inline(always)]
    fn encode_static<O: Output + ?Sized>(&self, buffer: &mut O) -> Result<(), Error> {
        // Bytes - [u8; N] it a separate case without padding for each element.
        // It should padded at the end if is not % ALIGN
        if T::UNALIGNED_BYTES {
            // SAFETY: `Type::U8` implemented only for `u8`.
            let bytes = unsafe { ::core::mem::transmute::<&[T; N], &[u8; N]>(self) };
            buffer.write(bytes.as_slice())?;
            for _ in 0..alignment_bytes(N) {
                buffer.push_byte(0)?;
            }
        } else {
            for e in self.iter() {
                e.encode_static(buffer)?;
            }
        }
        Ok(())
    }

    fn encode_dynamic<O: Output + ?Sized>(&self, buffer: &mut O) -> Result<(), Error> {
        for e in self.iter() {
            e.encode_dynamic(buffer)?;
        }

        Ok(())
    }
}

impl<const N: usize, T: Deserialize> Deserialize for [T; N] {
    fn decode_static<I: Input + ?Sized>(buffer: &mut I) -> Result<Self, Error> {
        if T::UNALIGNED_BYTES {
            let mut bytes: [u8; N] = [0; N];
            buffer.read(bytes.as_mut())?;
            buffer.skip(alignment_bytes(N))?;
            let ref_typed: &[T; N] = unsafe { core::mem::transmute(&bytes) };
            let typed: [T; N] = unsafe { core::ptr::read(ref_typed) };
            Ok(typed)
        } else {
            // Spec doesn't say how to deserialize arrays with unaligned
            // primitives(as `u16`, `u32`, `usize`), so unpad them.
            // SAFETY: `uninit`` is an array of `MaybUninit`, which do not require
            // initialization
            let mut uninit: [MaybeUninit<T>; N] =
                unsafe { MaybeUninit::uninit().assume_init() };
            // The following line coerces the pointer to the array to a pointer
            // to the first array element which is equivalent.
            for i in 0..N {
                match T::decode_static(buffer) {
                    Err(e) => {
                        for item in uninit.iter_mut().take(i) {
                            // SAFETY: all elements up to index i (excluded have been
                            // initialised)
                            unsafe {
                                item.assume_init_drop();
                            }
                        }
                        return Err(e)
                    }
                    Ok(decoded) => {
                        // SAFETY: `uninit[i]` is a MaybeUninit which can be
                        // safely overwritten.
                        uninit[i].write(decoded);

                        // SAFETY: Point to the next element after every iteration.
                        // 		 We do this N times therefore this is safe.
                    }
                }
            }

            // SAFETY: All array elements have been initialized above.
            let init = uninit.map(|v| unsafe { v.assume_init() });
            Ok(init)
        }
    }

    fn decode_dynamic<I: Input + ?Sized>(&mut self, buffer: &mut I) -> Result<(), Error> {
        for e in self.iter_mut() {
            e.decode_dynamic(buffer)?;
        }
        Ok(())
    }
}

#[cfg(feature = "alloc")]
impl Output for Vec<u8> {
    fn write(&mut self, bytes: &[u8]) -> Result<(), Error> {
        self.extend_from_slice(bytes);
        Ok(())
    }
}

impl<'a> Output for &'a mut [u8] {
    fn write(&mut self, from: &[u8]) -> Result<(), Error> {
        if from.len() > self.len() {
            return Err(Error::BufferIsTooShort)
        }
        let len = from.len();
        self[..len].copy_from_slice(from);
        // We need to reduce the inner slice by `len`, because we already filled them.
        let reduced = &mut self[len..];

        // Compiler is not clever enough to allow it.
        // https://stackoverflow.com/questions/25730586/how-can-i-create-my-own-data-structure-with-an-iterator-that-returns-mutable-ref
        *self = unsafe { &mut *(reduced as *mut [u8]) };
        Ok(())
    }
}

impl<'a> Input for &'a [u8] {
    fn remaining(&mut self) -> usize {
        self.len()
    }

    fn peek(&self, into: &mut [u8]) -> Result<(), Error> {
        if into.len() > self.len() {
            return Err(Error::BufferIsTooShort)
        }

        let len = into.len();
        into.copy_from_slice(&self[..len]);
        Ok(())
    }

    fn read(&mut self, into: &mut [u8]) -> Result<(), Error> {
        if into.len() > self.len() {
            return Err(Error::BufferIsTooShort)
        }

        let len = into.len();
        into.copy_from_slice(&self[..len]);
        *self = &self[len..];
        Ok(())
    }

    fn skip(&mut self, n: usize) -> Result<(), Error> {
        if n > self.len() {
            return Err(Error::BufferIsTooShort)
        }

        *self = &self[n..];
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    fn validate<T: Serialize + Deserialize + Eq + core::fmt::Debug>(t: T) {
        let bytes = t.to_bytes();
        let t2 = T::from_bytes(&bytes).expect("Roundtrip failed");
        assert_eq!(t, t2);
        assert_eq!(t.to_bytes(), t2.to_bytes());

        let mut vec = Vec::new();
        t.encode_static(&mut vec).expect("Encode failed");
        assert_eq!(vec.len(), t.size_static());
    }

    fn validate_enum<T: Serialize + Deserialize + Eq + fmt::Debug>(t: T) {
        let bytes = t.to_bytes();
        let t2 = T::from_bytes(&bytes).expect("Roundtrip failed");
        assert_eq!(t, t2);
        assert_eq!(t.to_bytes(), t2.to_bytes());

        let mut vec = Vec::new();
        t.encode_static(&mut vec).expect("Encode failed");
        assert_eq!(vec.len(), t.size_static());
        t.encode_dynamic(&mut vec).expect("Encode failed");
        assert_eq!(vec.len(), t.size());

        let mut vec2 = Vec::new();
        t.encode_dynamic(&mut vec2).expect("Encode failed");
        assert_eq!(vec2.len(), t.size_dynamic());
    }

    #[test]
    fn test_canonical_encode_decode() {
        validate(());
        validate(123u8);
        validate(u8::MAX);
        validate(123u16);
        validate(u16::MAX);
        validate(123u32);
        validate(u32::MAX);
        validate(123u64);
        validate(u64::MAX);
        validate(123u128);
        validate(u128::MAX);
        validate(Vec::<u8>::new());
        validate(Vec::<u16>::new());
        validate(Vec::<u32>::new());
        validate(Vec::<u64>::new());
        validate(Vec::<u128>::new());
        validate(vec![1u8]);
        validate(vec![1u16]);
        validate(vec![1u32]);
        validate(vec![1u64]);
        validate(vec![1u128]);
        validate(vec![1u8, 2u8]);
        validate(vec![1u16, 2u16]);
        validate(vec![1u32, 2u32]);
        validate(vec![1u64, 2u64]);
        validate(vec![1u128, 2u128]);

        #[derive(Serialize, Deserialize, Debug, PartialEq, Eq)]
        struct TestStruct1 {
            a: u8,
            b: u16,
        }

        let t = TestStruct1 { a: 123, b: 456 };
        assert_eq!(t.size_static(), 16);
        assert_eq!(t.size(), 16);
        validate(t);

        #[derive(Serialize, Deserialize, Debug, PartialEq, Eq)]
        struct TestStruct2 {
            a: u8,
            v: Vec<u8>,
            b: u16,
            arr0: [u8; 0],
            arr1: [u8; 2],
            arr2: [u16; 3],
            arr3: [u64; 4],
        }

        validate(TestStruct2 {
            a: 123,
            v: vec![1, 2, 3],
            b: 456,
            arr0: [],
            arr1: [1, 2],
            arr2: [1, 2, u16::MAX],
            arr3: [0, 3, 1111, u64::MAX],
        });

        #[derive(Serialize, Deserialize, Debug, PartialEq, Eq)]
        #[repr(transparent)]
        struct TestStruct3([u8; 64]);

        let t = TestStruct3([1; 64]);
        assert_eq!(t.size_static(), 64);
        assert_eq!(t.size(), 64);
        validate(t);

        #[derive(Serialize, Deserialize, Debug, Clone, PartialEq, Eq)]
        #[canonical(prefix = 1u64)]
        struct Prefixed1 {
            a: [u8; 3],
            b: Vec<u8>,
        }
        validate(Prefixed1 {
            a: [1, 2, 3],
            b: vec![4, 5, 6],
        });

        #[derive(Serialize, Deserialize, Debug, PartialEq, Eq)]
        #[repr(u8)]
        enum TestEnum1 {
            A,
            B,
            C = 0x13,
            D,
        }

        validate(TestEnum1::A);
        validate(TestEnum1::B);
        validate(TestEnum1::C);
        validate(TestEnum1::D);

        #[derive(Serialize, Deserialize, Debug, PartialEq, Eq)]
        enum TestEnum2 {
            A(u8),
            B([u8; 3]),
            C(Vec<u8>),
        }

        validate_enum(TestEnum2::A(2));
        validate_enum(TestEnum2::B([1, 2, 3]));
        validate_enum(TestEnum2::C(vec![1, 2, 3]));

        #[derive(Serialize, Deserialize, Debug, Clone, Copy, PartialEq, Eq)]
        #[canonical(prefix = 2u64)]
        struct Prefixed2(u16);
        validate(Prefixed2(u16::MAX));

        assert_eq!(
            &Prefixed1 {
                a: [1, 2, 3],
                b: vec![4, 5]
            }
            .to_bytes()[..8],
            &[0u8, 0, 0, 0, 0, 0, 0, 1]
        );
        assert_eq!(
            Prefixed2(u16::MAX).to_bytes(),
            [0u8, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0xff, 0xff]
        );
    }
}