1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
use crate::contract::Contract;
use crate::crypto;
use crate::error::Infallible;
use crate::storage::InterpreterStorage;

use fuel_storage::{MerkleRoot, MerkleStorage, Storage};
use fuel_tx::crypto::Hasher;
use fuel_types::{Address, Bytes32, Color, ContractId, Salt, Word};
use itertools::Itertools;

use std::borrow::Cow;
use std::collections::HashMap;

#[derive(Debug, Default, Clone, PartialEq, Eq)]
struct MemoryStorageInner {
    contracts: HashMap<ContractId, Contract>,
    balances: HashMap<(ContractId, Color), Word>,
    contract_state: HashMap<(ContractId, Bytes32), Bytes32>,
    contract_code_root: HashMap<ContractId, (Salt, Bytes32)>,
}

#[derive(Debug, Clone)]
/// In-memory storage implementation for the interpreter.
///
/// It tracks 3 states:
///
/// - memory: the transactions will be applied to this state.
/// - transacted: will receive the committed `memory` state.
/// - persisted: will receive the persisted `transacted` state.
pub struct MemoryStorage {
    block_height: u32,
    coinbase: Address,
    memory: MemoryStorageInner,
    transacted: MemoryStorageInner,
    persisted: MemoryStorageInner,
}

impl MemoryStorage {
    /// Create a new memory storage.
    pub fn new(block_height: u32, coinbase: Address) -> Self {
        Self {
            block_height,
            coinbase,
            memory: Default::default(),
            transacted: Default::default(),
            persisted: Default::default(),
        }
    }

    /// Fetch a mapping from the contract state.
    pub fn contract_state(&self, contract: &ContractId, key: &Bytes32) -> Cow<'_, Bytes32> {
        const DEFAULT_STATE: Bytes32 = Bytes32::zeroed();

        <Self as MerkleStorage<ContractId, Bytes32, Bytes32>>::get(self, contract, key)
            .expect("Infallible")
            .unwrap_or(Cow::Borrowed(&DEFAULT_STATE))
    }

    /// Set the transacted state to the memory state.
    pub fn commit(&mut self) {
        self.transacted = self.memory.clone();
    }

    /// Revert the memory state to the transacted state.
    pub fn revert(&mut self) {
        self.memory = self.transacted.clone();
    }

    /// Revert the memory and transacted changes to the persisted state.
    pub fn rollback(&mut self) {
        self.memory = self.persisted.clone();
        self.transacted = self.persisted.clone();
    }

    /// Persist the changes from transacted to memory+persisted state.
    pub fn persist(&mut self) {
        self.memory = self.transacted.clone();
        self.persisted = self.transacted.clone();
    }
}

impl Default for MemoryStorage {
    fn default() -> Self {
        let block_height = 1;
        let coinbase = Address::from(*Hasher::hash(b"coinbase"));

        Self::new(block_height, coinbase)
    }
}

impl Storage<ContractId, Contract> for MemoryStorage {
    type Error = Infallible;

    fn insert(&mut self, key: &ContractId, value: &Contract) -> Result<Option<Contract>, Infallible> {
        Ok(self.memory.contracts.insert(*key, value.clone()))
    }

    fn remove(&mut self, key: &ContractId) -> Result<Option<Contract>, Infallible> {
        Ok(self.memory.contracts.remove(key))
    }

    fn get(&self, key: &ContractId) -> Result<Option<Cow<'_, Contract>>, Infallible> {
        Ok(self.memory.contracts.get(key).map(Cow::Borrowed))
    }

    fn contains_key(&self, key: &ContractId) -> Result<bool, Infallible> {
        Ok(self.memory.contracts.contains_key(key))
    }
}

impl Storage<ContractId, (Salt, Bytes32)> for MemoryStorage {
    type Error = Infallible;

    fn insert(&mut self, key: &ContractId, value: &(Salt, Bytes32)) -> Result<Option<(Salt, Bytes32)>, Infallible> {
        Ok(self.memory.contract_code_root.insert(*key, *value))
    }

    fn remove(&mut self, key: &ContractId) -> Result<Option<(Salt, Bytes32)>, Infallible> {
        Ok(self.memory.contract_code_root.remove(key))
    }

    fn get(&self, key: &ContractId) -> Result<Option<Cow<'_, (Salt, Bytes32)>>, Infallible> {
        Ok(self.memory.contract_code_root.get(key).map(Cow::Borrowed))
    }

    fn contains_key(&self, key: &ContractId) -> Result<bool, Infallible> {
        Ok(self.memory.contract_code_root.contains_key(key))
    }
}

impl MerkleStorage<ContractId, Color, Word> for MemoryStorage {
    type Error = Infallible;

    fn insert(&mut self, parent: &ContractId, key: &Color, value: &Word) -> Result<Option<Word>, Infallible> {
        Ok(self.memory.balances.insert((*parent, *key), *value))
    }

    fn get(&self, parent: &ContractId, key: &Color) -> Result<Option<Cow<'_, Word>>, Infallible> {
        Ok(self.memory.balances.get(&(*parent, *key)).copied().map(Cow::Owned))
    }

    fn remove(&mut self, parent: &ContractId, key: &Color) -> Result<Option<Word>, Infallible> {
        Ok(self.memory.balances.remove(&(*parent, *key)))
    }

    fn contains_key(&self, parent: &ContractId, key: &Color) -> Result<bool, Infallible> {
        Ok(self.memory.balances.contains_key(&(*parent, *key)))
    }

    fn root(&mut self, parent: &ContractId) -> Result<MerkleRoot, Infallible> {
        let root = self
            .memory
            .balances
            .iter()
            .filter_map(|((contract, color), balance)| (contract == parent).then(|| (color, balance)))
            .sorted_by_key(|t| t.0)
            .map(|(_, &balance)| balance)
            .map(Word::to_be_bytes);

        Ok(crypto::ephemeral_merkle_root(root).into())
    }
}

impl MerkleStorage<ContractId, Bytes32, Bytes32> for MemoryStorage {
    type Error = Infallible;

    fn insert(&mut self, parent: &ContractId, key: &Bytes32, value: &Bytes32) -> Result<Option<Bytes32>, Infallible> {
        Ok(self.memory.contract_state.insert((*parent, *key), *value))
    }

    fn get(&self, parent: &ContractId, key: &Bytes32) -> Result<Option<Cow<'_, Bytes32>>, Infallible> {
        Ok(self.memory.contract_state.get(&(*parent, *key)).map(Cow::Borrowed))
    }

    fn remove(&mut self, parent: &ContractId, key: &Bytes32) -> Result<Option<Bytes32>, Infallible> {
        Ok(self.memory.contract_state.remove(&(*parent, *key)))
    }

    fn contains_key(&self, parent: &ContractId, key: &Bytes32) -> Result<bool, Infallible> {
        Ok(self.memory.contract_state.contains_key(&(*parent, *key)))
    }

    fn root(&mut self, parent: &ContractId) -> Result<MerkleRoot, Infallible> {
        let root = self
            .memory
            .contract_state
            .iter()
            .filter_map(|((contract, key), value)| (contract == parent).then(|| (key, value)))
            .sorted_by_key(|t| t.0)
            .map(|(_, value)| value);

        Ok(crypto::ephemeral_merkle_root(root).into())
    }
}

impl InterpreterStorage for MemoryStorage {
    type DataError = Infallible;

    fn block_height(&self) -> Result<u32, Infallible> {
        Ok(self.block_height)
    }

    fn block_hash(&self, block_height: u32) -> Result<Bytes32, Infallible> {
        Ok(Hasher::hash(&block_height.to_be_bytes()))
    }

    fn coinbase(&self) -> Result<Address, Infallible> {
        Ok(self.coinbase)
    }
}