fuel_vm/
state.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
//! Runtime state representation for the VM

use alloc::vec::Vec;

use fuel_tx::Receipt;
use fuel_types::{
    Bytes32,
    Word,
};

mod debug;

mod debugger;

pub use debug::{
    Breakpoint,
    DebugEval,
};

pub use debugger::Debugger;

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
/// Resulting state of an instruction set execution.
pub enum ExecuteState {
    /// The VM should proceed normally with the execution.
    Proceed,
    /// The current context returned a [`Word`].
    Return(Word),
    /// The current context returned some data represented as its digest.
    ReturnData(Bytes32),
    /// The set execution resulted in a `RVRT` instruction.
    Revert(Word),

    /// A debug event was reached.
    DebugEvent(DebugEval),
}

impl ExecuteState {
    /// Return true if the VM execution should continue.
    pub const fn should_continue(&self) -> bool {
        matches!(self, Self::Proceed | Self::DebugEvent(DebugEval::Continue))
    }
}

impl Default for ExecuteState {
    fn default() -> Self {
        Self::Proceed
    }
}

impl From<DebugEval> for ExecuteState {
    fn from(d: DebugEval) -> Self {
        Self::DebugEvent(d)
    }
}

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
/// Resulting state of a transaction/program execution.
pub enum ProgramState {
    /// The transaction returned a [`Word`].
    Return(Word),
    /// The transaction returned some data represented as its digest.
    ReturnData(Bytes32),
    /// The transaction execution resulted in a `RVRT` instruction.
    Revert(Word),

    /// A debug event was reached for the transaction. The VM is suspended.
    RunProgram(DebugEval),

    /// A debug event was reached for a predicate verification. The VM is
    /// suspended.
    VerifyPredicate(DebugEval),
}

impl PartialEq<Breakpoint> for ProgramState {
    fn eq(&self, other: &Breakpoint) -> bool {
        match self.debug_ref() {
            Some(&DebugEval::Breakpoint(b)) => &b == other,
            _ => false,
        }
    }
}

impl ProgramState {
    /// Debug event representation.
    ///
    /// Will return `None` if no debug event was reached.
    pub const fn debug_ref(&self) -> Option<&DebugEval> {
        match self {
            Self::RunProgram(d) | Self::VerifyPredicate(d) => Some(d),
            _ => None,
        }
    }

    /// Return `true` if a debug event was reached.
    pub const fn is_debug(&self) -> bool {
        self.debug_ref().is_some()
    }
}

#[derive(Debug, Clone, PartialEq, Eq)]
/// Representation of the result of a transaction execution.
pub struct StateTransition<Tx> {
    state: ProgramState,
    tx: Tx,
    receipts: Vec<Receipt>,
}

impl<Tx> StateTransition<Tx> {
    /// Create a new state transition representation.
    pub const fn new(state: ProgramState, tx: Tx, receipts: Vec<Receipt>) -> Self {
        Self {
            state,
            tx,
            receipts,
        }
    }

    /// Program state representation.
    pub const fn state(&self) -> &ProgramState {
        &self.state
    }

    /// Resulting mutated transaction after VM execution.
    pub const fn tx(&self) -> &Tx {
        &self.tx
    }

    /// Flag whether the client should revert after execution.
    pub fn should_revert(&self) -> bool {
        self.receipts
            .iter()
            .any(|r| matches!(r, Receipt::Revert { .. } | Receipt::Panic { .. }))
    }

    /// Transaction receipts representing the state transition.
    pub fn receipts(&self) -> &[Receipt] {
        self.receipts.as_slice()
    }

    /// Convert this instance into its internal attributes.
    pub fn into_inner(self) -> (ProgramState, Tx, Vec<Receipt>) {
        (self.state, self.tx, self.receipts)
    }
}

impl<Tx> From<StateTransition<Tx>> for ProgramState {
    fn from(t: StateTransition<Tx>) -> ProgramState {
        t.state
    }
}

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
/// Zero-copy Representation of the result of a transaction execution bound to
/// the lifetime of the VM.
pub struct StateTransitionRef<'a, Tx> {
    state: ProgramState,
    tx: &'a Tx,
    receipts: &'a [Receipt],
}

impl<'a, Tx> StateTransitionRef<'a, Tx> {
    /// Create a new by reference state transition representation.
    pub const fn new(state: ProgramState, tx: &'a Tx, receipts: &'a [Receipt]) -> Self {
        Self {
            state,
            tx,
            receipts,
        }
    }

    /// Program state representation.
    pub const fn state(&self) -> &ProgramState {
        &self.state
    }

    /// Resulting mutated transaction after VM execution.
    pub const fn tx(&self) -> &Tx {
        self.tx
    }

    /// Transaction receipts representing the state transition.
    pub const fn receipts(&self) -> &[Receipt] {
        self.receipts
    }

    /// Flag whether the client should revert after execution.
    pub fn should_revert(&self) -> bool {
        self.receipts
            .iter()
            .any(|r| matches!(r, Receipt::Revert { .. } | Receipt::Panic { .. }))
    }
}

impl<'a, Tx> From<&'a StateTransition<Tx>> for StateTransitionRef<'a, Tx> {
    fn from(t: &'a StateTransition<Tx>) -> StateTransitionRef<'a, Tx> {
        Self {
            state: *t.state(),
            tx: t.tx(),
            receipts: t.receipts(),
        }
    }
}

impl<'a, Tx: Clone> From<StateTransitionRef<'a, Tx>> for StateTransition<Tx> {
    fn from(t: StateTransitionRef<Tx>) -> StateTransition<Tx> {
        StateTransition {
            state: *t.state(),
            tx: t.tx().clone(),
            receipts: t.receipts().to_vec(),
        }
    }
}

impl<'a, Tx: Clone> From<StateTransitionRef<'a, Tx>> for ProgramState {
    fn from(t: StateTransitionRef<'a, Tx>) -> ProgramState {
        t.state
    }
}