1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
use std::{fmt::Debug, future::Future, num::NonZeroU32, time::Duration};

use fuels_core::types::errors::{error, Result};

/// A set of strategies to control retry intervals between attempts.
///
/// The `Backoff` enum defines different strategies for managing intervals between retry attempts.
/// Each strategy allows you to customize the waiting time before a new attempt based on the
/// number of attempts made.
///
/// # Variants
///
/// - `Linear(Duration)`: Increases the waiting time linearly with each attempt.
/// - `Exponential(Duration)`: Doubles the waiting time with each attempt.
/// - `Fixed(Duration)`: Uses a constant waiting time between attempts.
///
/// # Examples
///
/// ```rust
/// use std::time::Duration;
/// use fuels_accounts::provider::Backoff;
///
/// let linear_backoff = Backoff::Linear(Duration::from_secs(2));
/// let exponential_backoff = Backoff::Exponential(Duration::from_secs(1));
/// let fixed_backoff = Backoff::Fixed(Duration::from_secs(5));
/// ```
//ANCHOR: backoff
#[derive(Debug, Clone)]
pub enum Backoff {
    Linear(Duration),
    Exponential(Duration),
    Fixed(Duration),
}
//ANCHOR_END: backoff

impl Default for Backoff {
    fn default() -> Self {
        Backoff::Linear(Duration::from_millis(10))
    }
}

impl Backoff {
    pub fn wait_duration(&self, attempt: u32) -> Duration {
        match self {
            Backoff::Linear(base_duration) => *base_duration * (attempt + 1),
            Backoff::Exponential(base_duration) => *base_duration * 2u32.pow(attempt),
            Backoff::Fixed(interval) => *interval,
        }
    }
}

/// Configuration for controlling retry behavior.
///
/// The `RetryConfig` struct encapsulates the configuration parameters for controlling the retry behavior
/// of asynchronous actions. It includes the maximum number of attempts and the interval strategy from
/// the `Backoff` enum that determines how much time to wait between retry attempts.
///
/// # Fields
///
/// - `max_attempts`: The maximum number of attempts before giving up.
/// - `interval`: The chosen interval strategy from the `Backoff` enum.
///
/// # Examples
///
/// ```rust
/// use std::num::NonZeroUsize;
/// use std::time::Duration;
/// use fuels_accounts::provider::{Backoff, RetryConfig};
///
/// let max_attempts = 5;
/// let interval_strategy = Backoff::Exponential(Duration::from_secs(1));
///
/// let retry_config = RetryConfig::new(max_attempts, interval_strategy).unwrap();
/// ```
// ANCHOR: retry_config
#[derive(Clone, Debug)]
pub struct RetryConfig {
    max_attempts: NonZeroU32,
    interval: Backoff,
}
// ANCHOR_END: retry_config

impl RetryConfig {
    pub fn new(max_attempts: u32, interval: Backoff) -> Result<Self> {
        let max_attempts = NonZeroU32::new(max_attempts)
            .ok_or_else(|| error!(Other, "`max_attempts` must be greater than `0`"))?;

        Ok(RetryConfig {
            max_attempts,
            interval,
        })
    }
}

impl Default for RetryConfig {
    fn default() -> Self {
        Self {
            max_attempts: NonZeroU32::new(1).expect("should not fail"),
            interval: Default::default(),
        }
    }
}

/// Retries an asynchronous action with customizable retry behavior.
///
/// This function takes an asynchronous action represented by a closure `action`.
/// The action is executed repeatedly with backoff and retry logic based on the
/// provided `retry_config` and the `should_retry` condition.
///
/// The `action` closure should return a `Future` that resolves to a `Result<T, K>`,
/// where `T` represents the success type and `K` represents the error type.
///
/// # Parameters
///
/// - `action`: The asynchronous action to be retried.
/// - `retry_config`: A reference to the retry configuration.
/// - `should_retry`: A closure that determines whether to retry based on the result.
///
/// # Return
///
/// Returns `Ok(T)` if the action succeeds without requiring further retries.
/// Returns `Err(Error)` if the maximum number of attempts is reached and the action
/// still fails. If a retryable error occurs during the attempts, the error will
/// be returned if the `should_retry` condition allows further retries.
pub(crate) async fn retry<Fut, T, ShouldRetry>(
    mut action: impl FnMut() -> Fut,
    retry_config: &RetryConfig,
    should_retry: ShouldRetry,
) -> T
where
    Fut: Future<Output = T>,
    ShouldRetry: Fn(&T) -> bool,
{
    let mut last_result = None;

    for attempt in 0..retry_config.max_attempts.into() {
        let result = action().await;

        if should_retry(&result) {
            last_result = Some(result)
        } else {
            return result;
        }

        tokio::time::sleep(retry_config.interval.wait_duration(attempt)).await;
    }

    last_result.expect("should not happen")
}

#[cfg(test)]
mod tests {
    mod retry_until {
        use std::time::{Duration, Instant};

        use fuels_core::types::errors::{error, Result};
        use tokio::sync::Mutex;

        use crate::provider::{retry_util, Backoff, RetryConfig};

        #[tokio::test]
        async fn returns_last_received_response() -> Result<()> {
            // given
            let err_msgs = ["err1", "err2", "err3"];
            let number_of_attempts = Mutex::new(0usize);

            let will_always_fail = || async {
                let msg = err_msgs[*number_of_attempts.lock().await];
                *number_of_attempts.lock().await += 1;

                msg
            };

            let should_retry_fn = |_res: &_| -> bool { true };

            let retry_options = RetryConfig::new(3, Backoff::Linear(Duration::from_millis(10)))?;

            // when
            let response =
                retry_util::retry(will_always_fail, &retry_options, should_retry_fn).await;

            // then
            assert_eq!(response, "err3");

            Ok(())
        }

        #[tokio::test]
        async fn stops_retrying_when_predicate_is_satisfied() -> Result<()> {
            // given
            let values = Mutex::new(vec![1, 2, 3]);

            let will_always_fail = || async { values.lock().await.pop().unwrap() };

            let should_retry_fn = |res: &i32| *res != 2;

            let retry_options = RetryConfig::new(3, Backoff::Linear(Duration::from_millis(10)))?;

            // when
            let response =
                retry_util::retry(will_always_fail, &retry_options, should_retry_fn).await;

            // then
            assert_eq!(response, 2);

            Ok(())
        }

        #[tokio::test]
        async fn retry_respects_delay_between_attempts_fixed() -> Result<()> {
            // given
            let timestamps: Mutex<Vec<Instant>> = Mutex::new(vec![]);

            let will_fail_and_record_timestamp = || async {
                timestamps.lock().await.push(Instant::now());
                Result::<()>::Err(error!(Other, "error"))
            };

            let should_retry_fn = |_res: &_| -> bool { true };

            let retry_options = RetryConfig::new(3, Backoff::Fixed(Duration::from_millis(100)))?;

            // when
            let _ = retry_util::retry(
                will_fail_and_record_timestamp,
                &retry_options,
                should_retry_fn,
            )
            .await;

            // then
            let timestamps_vec = timestamps.lock().await.clone();

            let timestamps_spaced_out_at_least_100_mills = timestamps_vec
                .iter()
                .zip(timestamps_vec.iter().skip(1))
                .all(|(current_timestamp, the_next_timestamp)| {
                    the_next_timestamp.duration_since(*current_timestamp)
                        >= Duration::from_millis(100)
                });

            assert!(
                timestamps_spaced_out_at_least_100_mills,
                "retry did not wait for the specified time between attempts"
            );

            Ok(())
        }

        #[tokio::test]
        async fn retry_respects_delay_between_attempts_linear() -> Result<()> {
            // given
            let timestamps: Mutex<Vec<Instant>> = Mutex::new(vec![]);

            let will_fail_and_record_timestamp = || async {
                timestamps.lock().await.push(Instant::now());
                Result::<()>::Err(error!(Other, "error"))
            };

            let should_retry_fn = |_res: &_| -> bool { true };

            let retry_options = RetryConfig::new(3, Backoff::Linear(Duration::from_millis(100)))?;

            // when
            let _ = retry_util::retry(
                will_fail_and_record_timestamp,
                &retry_options,
                should_retry_fn,
            )
            .await;

            // then
            let timestamps_vec = timestamps.lock().await.clone();

            let timestamps_spaced_out_at_least_100_mills = timestamps_vec
                .iter()
                .zip(timestamps_vec.iter().skip(1))
                .enumerate()
                .all(|(attempt, (current_timestamp, the_next_timestamp))| {
                    the_next_timestamp.duration_since(*current_timestamp)
                        >= (Duration::from_millis(100) * (attempt + 1) as u32)
                });

            assert!(
                timestamps_spaced_out_at_least_100_mills,
                "retry did not wait for the specified time between attempts"
            );

            Ok(())
        }

        #[tokio::test]
        async fn retry_respects_delay_between_attempts_exponential() -> Result<()> {
            // given
            let timestamps: Mutex<Vec<Instant>> = Mutex::new(vec![]);

            let will_fail_and_record_timestamp = || async {
                timestamps.lock().await.push(Instant::now());
                Result::<()>::Err(error!(Other, "error"))
            };

            let should_retry_fn = |_res: &_| -> bool { true };

            let retry_options =
                RetryConfig::new(3, Backoff::Exponential(Duration::from_millis(100)))?;

            // when
            let _ = retry_util::retry(
                will_fail_and_record_timestamp,
                &retry_options,
                should_retry_fn,
            )
            .await;

            // then
            let timestamps_vec = timestamps.lock().await.clone();

            let timestamps_spaced_out_at_least_100_mills = timestamps_vec
                .iter()
                .zip(timestamps_vec.iter().skip(1))
                .enumerate()
                .all(|(attempt, (current_timestamp, the_next_timestamp))| {
                    the_next_timestamp.duration_since(*current_timestamp)
                        >= (Duration::from_millis(100) * (2_usize.pow((attempt) as u32)) as u32)
                });

            assert!(
                timestamps_spaced_out_at_least_100_mills,
                "retry did not wait for the specified time between attempts"
            );

            Ok(())
        }
    }
}