use fuel_types::bytes::padded_len_usize;
use fuels_types::{
constants::WORD_SIZE,
errors::Result,
pad_string, pad_u16, pad_u32, pad_u8,
unresolved_bytes::{Data, UnresolvedBytes},
EnumSelector, StringToken, Token,
};
use itertools::Itertools;
pub struct ABIEncoder;
impl ABIEncoder {
pub fn encode(args: &[Token]) -> Result<UnresolvedBytes> {
let data = Self::encode_tokens(args)?;
Ok(UnresolvedBytes::new(data))
}
fn encode_tokens(tokens: &[Token]) -> Result<Vec<Data>> {
tokens
.iter()
.map(Self::encode_token)
.flatten_ok()
.collect::<Result<Vec<_>>>()
}
fn encode_token(arg: &Token) -> Result<Vec<Data>> {
let encoded_token = match arg {
Token::U8(arg_u8) => vec![Self::encode_u8(*arg_u8)],
Token::U16(arg_u16) => vec![Self::encode_u16(*arg_u16)],
Token::U32(arg_u32) => vec![Self::encode_u32(*arg_u32)],
Token::U64(arg_u64) => vec![Self::encode_u64(*arg_u64)],
Token::Bool(arg_bool) => vec![Self::encode_bool(*arg_bool)],
Token::B256(arg_bits256) => vec![Self::encode_b256(arg_bits256)],
Token::Array(arg_array) => Self::encode_array(arg_array)?,
Token::Vector(data) => Self::encode_vector(data)?,
Token::String(arg_string) => vec![Self::encode_string(arg_string)?],
Token::Struct(arg_struct) => Self::encode_struct(arg_struct)?,
Token::Enum(arg_enum) => Self::encode_enum(arg_enum)?,
Token::Tuple(arg_tuple) => Self::encode_tuple(arg_tuple)?,
Token::Unit => vec![Self::encode_unit()],
Token::RawSlice(data) => Self::encode_raw_slice(data)?,
Token::Bytes(data) => Self::encode_bytes(data.to_vec())?,
};
Ok(encoded_token)
}
fn encode_unit() -> Data {
Data::Inline(vec![0; WORD_SIZE])
}
fn encode_tuple(arg_tuple: &[Token]) -> Result<Vec<Data>> {
Self::encode_tokens(arg_tuple)
}
fn encode_struct(subcomponents: &[Token]) -> Result<Vec<Data>> {
Self::encode_tokens(subcomponents)
}
fn encode_array(arg_array: &[Token]) -> Result<Vec<Data>> {
Self::encode_tokens(arg_array)
}
fn encode_string(arg_string: &StringToken) -> Result<Data> {
Ok(Data::Inline(pad_string(arg_string.get_encodable_str()?)))
}
fn encode_b256(arg_bits256: &[u8; 32]) -> Data {
Data::Inline(arg_bits256.to_vec())
}
fn encode_bool(arg_bool: bool) -> Data {
Data::Inline(pad_u8(u8::from(arg_bool)).to_vec())
}
fn encode_u64(arg_u64: u64) -> Data {
Data::Inline(arg_u64.to_be_bytes().to_vec())
}
fn encode_u32(arg_u32: u32) -> Data {
Data::Inline(pad_u32(arg_u32).to_vec())
}
fn encode_u16(arg_u16: u16) -> Data {
Data::Inline(pad_u16(arg_u16).to_vec())
}
fn encode_u8(arg_u8: u8) -> Data {
Data::Inline(pad_u8(arg_u8).to_vec())
}
fn encode_enum(selector: &EnumSelector) -> Result<Vec<Data>> {
let (discriminant, token_within_enum, variants) = selector;
let mut encoded_enum = vec![Self::encode_discriminant(*discriminant)];
if !variants.only_units_inside() {
let variant_param_type = variants.param_type_of_variant(*discriminant)?;
let padding_amount = variants.compute_padding_amount(variant_param_type);
encoded_enum.push(Data::Inline(vec![0; padding_amount]));
let token_data = Self::encode_token(token_within_enum)?;
encoded_enum.extend(token_data);
}
Ok(encoded_enum)
}
fn encode_discriminant(discriminant: u8) -> Data {
Self::encode_u8(discriminant)
}
fn encode_vector(data: &[Token]) -> Result<Vec<Data>> {
let encoded_data = Self::encode_tokens(data)?;
let cap = data.len() as u64;
let len = data.len() as u64;
Ok(vec![
Data::Dynamic(encoded_data),
Self::encode_u64(cap),
Self::encode_u64(len),
])
}
fn encode_raw_slice(data: &[u64]) -> Result<Vec<Data>> {
let encoded_data = data
.iter()
.map(|&word| Self::encode_u64(word))
.collect::<Vec<_>>();
let num_bytes = data.len() * WORD_SIZE;
let len = Self::encode_u64(num_bytes as u64);
Ok(vec![Data::Dynamic(encoded_data), len])
}
fn encode_bytes(mut data: Vec<u8>) -> Result<Vec<Data>> {
let len = data.len();
zeropad_to_word_alignment(&mut data);
let cap = data.len() as u64;
let encoded_data = vec![Data::Inline(data)];
Ok(vec![
Data::Dynamic(encoded_data),
Self::encode_u64(cap),
Self::encode_u64(len as u64),
])
}
}
fn zeropad_to_word_alignment(data: &mut Vec<u8>) {
let padded_length = padded_len_usize(data.len());
data.resize(padded_length, 0);
}
#[cfg(test)]
mod tests {
use std::slice;
use fuels_types::{enum_variants::EnumVariants, errors::Result, param_types::ParamType};
use itertools::chain;
use sha2::{Digest, Sha256};
use super::*;
use crate::utils::first_four_bytes_of_sha256_hash;
const VEC_METADATA_SIZE: usize = 3 * WORD_SIZE;
const DISCRIMINANT_SIZE: usize = WORD_SIZE;
#[test]
fn encode_function_signature() {
let fn_signature = "entry_one(u64)";
let result = first_four_bytes_of_sha256_hash(fn_signature);
println!("Encoded function selector for ({fn_signature}): {result:#0x?}");
assert_eq!(result, [0x0, 0x0, 0x0, 0x0, 0x0c, 0x36, 0xcb, 0x9c]);
}
#[test]
fn encode_function_with_u32_type() -> Result<()> {
let fn_signature = "entry_one(u32)";
let arg = Token::U32(u32::MAX);
let args: Vec<Token> = vec![arg];
let expected_encoded_abi = [0x0, 0x0, 0x0, 0x0, 0xff, 0xff, 0xff, 0xff];
let expected_function_selector = [0x0, 0x0, 0x0, 0x0, 0xb7, 0x9e, 0xf7, 0x43];
let encoded_function_selector = first_four_bytes_of_sha256_hash(fn_signature);
let encoded = ABIEncoder::encode(&args)?.resolve(0);
println!("Encoded ABI for ({fn_signature}): {encoded:#0x?}");
assert_eq!(hex::encode(expected_encoded_abi), hex::encode(encoded));
assert_eq!(encoded_function_selector, expected_function_selector);
Ok(())
}
#[test]
fn encode_function_with_u32_type_multiple_args() -> Result<()> {
let fn_signature = "takes_two(u32,u32)";
let first = Token::U32(u32::MAX);
let second = Token::U32(u32::MAX);
let args: Vec<Token> = vec![first, second];
let expected_encoded_abi = [
0x0, 0x0, 0x0, 0x0, 0xff, 0xff, 0xff, 0xff, 0x0, 0x0, 0x0, 0x0, 0xff, 0xff, 0xff, 0xff,
];
let expected_fn_selector = [0x0, 0x0, 0x0, 0x0, 0xa7, 0x07, 0xb0, 0x8e];
let encoded_function_selector = first_four_bytes_of_sha256_hash(fn_signature);
let encoded = ABIEncoder::encode(&args)?.resolve(0);
println!("Encoded ABI for ({fn_signature}): {encoded:#0x?}");
assert_eq!(hex::encode(expected_encoded_abi), hex::encode(encoded));
assert_eq!(encoded_function_selector, expected_fn_selector);
Ok(())
}
#[test]
fn encode_function_with_u64_type() -> Result<()> {
let fn_signature = "entry_one(u64)";
let arg = Token::U64(u64::MAX);
let args: Vec<Token> = vec![arg];
let expected_encoded_abi = [0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff];
let expected_function_selector = [0x0, 0x0, 0x0, 0x0, 0x0c, 0x36, 0xcb, 0x9c];
let encoded_function_selector = first_four_bytes_of_sha256_hash(fn_signature);
let encoded = ABIEncoder::encode(&args)?.resolve(0);
println!("Encoded ABI for ({fn_signature}): {encoded:#0x?}");
assert_eq!(hex::encode(expected_encoded_abi), hex::encode(encoded));
assert_eq!(encoded_function_selector, expected_function_selector);
Ok(())
}
#[test]
fn encode_function_with_bool_type() -> Result<()> {
let fn_signature = "bool_check(bool)";
let arg = Token::Bool(true);
let args: Vec<Token> = vec![arg];
let expected_encoded_abi = [0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1];
let expected_function_selector = [0x0, 0x0, 0x0, 0x0, 0x66, 0x8f, 0xff, 0x58];
let encoded_function_selector = first_four_bytes_of_sha256_hash(fn_signature);
let encoded = ABIEncoder::encode(&args)?.resolve(0);
println!("Encoded ABI for ({fn_signature}): {encoded:#0x?}");
assert_eq!(hex::encode(expected_encoded_abi), hex::encode(encoded));
assert_eq!(encoded_function_selector, expected_function_selector);
Ok(())
}
#[test]
fn encode_function_with_two_different_type() -> Result<()> {
let fn_signature = "takes_two_types(u32,bool)";
let first = Token::U32(u32::MAX);
let second = Token::Bool(true);
let args: Vec<Token> = vec![first, second];
let expected_encoded_abi = [
0x0, 0x0, 0x0, 0x0, 0xff, 0xff, 0xff, 0xff, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1,
];
let expected_function_selector = [0x0, 0x0, 0x0, 0x0, 0xf5, 0x40, 0x73, 0x2b];
let encoded_function_selector = first_four_bytes_of_sha256_hash(fn_signature);
let encoded = ABIEncoder::encode(&args)?.resolve(0);
println!("Encoded ABI for ({fn_signature}): {encoded:#0x?}");
assert_eq!(hex::encode(expected_encoded_abi), hex::encode(encoded));
assert_eq!(encoded_function_selector, expected_function_selector);
Ok(())
}
#[test]
fn encode_function_with_bits256_type() -> Result<()> {
let fn_signature = "takes_bits256(b256)";
let mut hasher = Sha256::new();
hasher.update("test string".as_bytes());
let arg = hasher.finalize();
let arg = Token::B256(arg.into());
let args: Vec<Token> = vec![arg];
let expected_encoded_abi = [
0xd5, 0x57, 0x9c, 0x46, 0xdf, 0xcc, 0x7f, 0x18, 0x20, 0x70, 0x13, 0xe6, 0x5b, 0x44,
0xe4, 0xcb, 0x4e, 0x2c, 0x22, 0x98, 0xf4, 0xac, 0x45, 0x7b, 0xa8, 0xf8, 0x27, 0x43,
0xf3, 0x1e, 0x93, 0xb,
];
let expected_function_selector = [0x0, 0x0, 0x0, 0x0, 0x01, 0x49, 0x42, 0x96];
let encoded_function_selector = first_four_bytes_of_sha256_hash(fn_signature);
let encoded = ABIEncoder::encode(&args)?.resolve(0);
println!("Encoded ABI for ({fn_signature}): {encoded:#0x?}");
assert_eq!(hex::encode(expected_encoded_abi), hex::encode(encoded));
assert_eq!(encoded_function_selector, expected_function_selector);
Ok(())
}
#[test]
fn encode_function_with_array_type() -> Result<()> {
let fn_signature = "takes_integer_array(u8[3])";
let first = Token::U8(1);
let second = Token::U8(2);
let third = Token::U8(3);
let arg = vec![first, second, third];
let arg_array = Token::Array(arg);
let args: Vec<Token> = vec![arg_array];
let expected_encoded_abi = [
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3,
];
let expected_function_selector = [0x0, 0x0, 0x0, 0x0, 0x2c, 0x5a, 0x10, 0x2e];
let encoded_function_selector = first_four_bytes_of_sha256_hash(fn_signature);
let encoded = ABIEncoder::encode(&args)?.resolve(0);
println!("Encoded ABI for ({fn_signature}): {encoded:#0x?}");
assert_eq!(hex::encode(expected_encoded_abi), hex::encode(encoded));
assert_eq!(encoded_function_selector, expected_function_selector);
Ok(())
}
#[test]
fn encode_function_with_string_type() -> Result<()> {
let fn_signature = "takes_string(str[23])";
let args: Vec<Token> = vec![Token::String(StringToken::new(
"This is a full sentence".into(),
23,
))];
let expected_encoded_abi = [
0x54, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x61, 0x20, 0x66, 0x75, 0x6c, 0x6c,
0x20, 0x73, 0x65, 0x6e, 0x74, 0x65, 0x6e, 0x63, 0x65, 0x00,
];
let expected_function_selector = [0x0, 0x0, 0x0, 0x0, 0xd5, 0x6e, 0x76, 0x51];
let encoded_function_selector = first_four_bytes_of_sha256_hash(fn_signature);
let encoded = ABIEncoder::encode(&args)?.resolve(0);
println!("Encoded ABI for ({fn_signature}): {encoded:#0x?}");
assert_eq!(hex::encode(expected_encoded_abi), hex::encode(encoded));
assert_eq!(encoded_function_selector, expected_function_selector);
Ok(())
}
#[test]
fn encode_function_with_struct() -> Result<()> {
let fn_signature = "takes_my_struct(MyStruct)";
let foo = Token::U8(1);
let bar = Token::Bool(true);
let arg = Token::Struct(vec![foo, bar]);
let args: Vec<Token> = vec![arg];
let expected_encoded_abi = [
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1,
];
let expected_function_selector = [0x0, 0x0, 0x0, 0x0, 0xa8, 0x1e, 0x8d, 0xd7];
let encoded_function_selector = first_four_bytes_of_sha256_hash(fn_signature);
let encoded = ABIEncoder::encode(&args)?.resolve(0);
println!("Encoded ABI for ({fn_signature}): {encoded:#0x?}");
assert_eq!(hex::encode(expected_encoded_abi), hex::encode(encoded));
assert_eq!(encoded_function_selector, expected_function_selector);
Ok(())
}
#[test]
fn encode_function_with_enum() -> Result<()> {
let fn_signature = "takes_my_enum(MyEnum)";
let types = vec![ParamType::U32, ParamType::Bool];
let params = EnumVariants::new(types)?;
let enum_selector = Box::new((0, Token::U32(42), params));
let arg = Token::Enum(enum_selector);
let args: Vec<Token> = vec![arg];
let expected_encoded_abi = [
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2a,
];
let expected_function_selector = [0x0, 0x0, 0x0, 0x0, 0x35, 0x5c, 0xa6, 0xfa];
let encoded_function_selector = first_four_bytes_of_sha256_hash(fn_signature);
let encoded = ABIEncoder::encode(&args)?.resolve(0);
assert_eq!(hex::encode(expected_encoded_abi), hex::encode(encoded));
assert_eq!(encoded_function_selector, expected_function_selector);
Ok(())
}
#[test]
fn enums_are_sized_to_fit_the_biggest_variant() -> Result<()> {
let types = vec![ParamType::B256, ParamType::U64];
let enum_variants = EnumVariants::new(types)?;
let enum_selector = Box::new((1, Token::U64(42), enum_variants));
let encoded = ABIEncoder::encode(slice::from_ref(&Token::Enum(enum_selector)))?.resolve(0);
let enum_discriminant_enc = vec![0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1];
let u64_enc = vec![0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2a];
let enum_padding = vec![0x0; 24];
let expected: Vec<u8> = [enum_discriminant_enc, enum_padding, u64_enc]
.into_iter()
.flatten()
.collect();
assert_eq!(hex::encode(expected), hex::encode(encoded));
Ok(())
}
#[test]
fn encoding_enums_with_deeply_nested_types() -> Result<()> {
let types = vec![ParamType::Bool, ParamType::String(10)];
let deeper_enum_variants = EnumVariants::new(types)?;
let deeper_enum_token = Token::String(StringToken::new("0123456789".into(), 10));
let str_enc = vec![
b'0', b'1', b'2', b'3', b'4', b'5', b'6', b'7', b'8', b'9', 0x0, 0x0, 0x0, 0x0, 0x0,
0x0,
];
let deeper_enum_discriminant_enc = vec![0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1];
let fields = vec![
ParamType::Enum {
variants: deeper_enum_variants.clone(),
generics: vec![],
},
ParamType::Bool,
];
let struct_a_type = ParamType::Struct {
fields,
generics: vec![],
};
let struct_a_token = Token::Struct(vec![
Token::Enum(Box::new((1, deeper_enum_token, deeper_enum_variants))),
Token::U32(11332),
]);
let some_number_enc = vec![0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2c, 0x44];
let types = vec![struct_a_type, ParamType::Bool, ParamType::U64];
let top_level_enum_variants = EnumVariants::new(types)?;
let top_level_enum_token =
Token::Enum(Box::new((0, struct_a_token, top_level_enum_variants)));
let top_lvl_discriminant_enc = vec![0x0; 8];
let encoded = ABIEncoder::encode(slice::from_ref(&top_level_enum_token))?.resolve(0);
let correct_encoding: Vec<u8> = [
top_lvl_discriminant_enc,
deeper_enum_discriminant_enc,
str_enc,
some_number_enc,
]
.into_iter()
.flatten()
.collect();
assert_eq!(hex::encode(correct_encoding), hex::encode(encoded));
Ok(())
}
#[test]
fn encode_function_with_nested_structs() -> Result<()> {
let fn_signature = "takes_my_nested_struct(Foo)";
let args: Vec<Token> = vec![Token::Struct(vec![
Token::U16(10),
Token::Struct(vec![
Token::Bool(true),
Token::Array(vec![Token::U8(1), Token::U8(2)]),
]),
])];
let expected_encoded_abi = [
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0xa, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2,
];
let expected_function_selector = [0x0, 0x0, 0x0, 0x0, 0xea, 0x0a, 0xfd, 0x23];
let encoded_function_selector = first_four_bytes_of_sha256_hash(fn_signature);
let encoded = ABIEncoder::encode(&args)?.resolve(0);
println!("Encoded ABI for ({fn_signature}): {encoded:#0x?}");
assert_eq!(hex::encode(expected_encoded_abi), hex::encode(encoded));
assert_eq!(encoded_function_selector, expected_function_selector);
Ok(())
}
#[test]
fn encode_comprehensive_function() -> Result<()> {
let fn_signature = "long_function(Foo,u8[2],b256,str[23])";
let foo = Token::Struct(vec![
Token::U16(10),
Token::Struct(vec![
Token::Bool(true),
Token::Array(vec![Token::U8(1), Token::U8(2)]),
]),
]);
let u8_arr = Token::Array(vec![Token::U8(1), Token::U8(2)]);
let mut hasher = Sha256::new();
hasher.update("test string".as_bytes());
let b256 = Token::B256(hasher.finalize().into());
let s = Token::String(StringToken::new("This is a full sentence".into(), 23));
let args: Vec<Token> = vec![foo, u8_arr, b256, s];
let expected_encoded_abi = [
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0xa, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2, 0xd5, 0x57, 0x9c, 0x46, 0xdf, 0xcc, 0x7f, 0x18, 0x20, 0x70, 0x13, 0xe6, 0x5b, 0x44, 0xe4, 0xcb, 0x4e, 0x2c, 0x22, 0x98, 0xf4, 0xac, 0x45, 0x7b, 0xa8, 0xf8, 0x27, 0x43, 0xf3, 0x1e, 0x93, 0xb, 0x54, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x61, 0x20, 0x66, 0x75, 0x6c, 0x6c, 0x20, 0x73, 0x65, 0x6e, 0x74, 0x65, 0x6e, 0x63, 0x65, 0x0, ];
let expected_function_selector = [0x0, 0x0, 0x0, 0x0, 0x10, 0x93, 0xb2, 0x12];
let encoded_function_selector = first_four_bytes_of_sha256_hash(fn_signature);
let encoded = ABIEncoder::encode(&args)?.resolve(0);
assert_eq!(hex::encode(expected_encoded_abi), hex::encode(encoded));
assert_eq!(encoded_function_selector, expected_function_selector);
Ok(())
}
#[test]
fn enums_with_only_unit_variants_are_encoded_in_one_word() -> Result<()> {
let expected = [0, 0, 0, 0, 0, 0, 0, 1];
let types = vec![ParamType::Unit, ParamType::Unit];
let enum_selector = Box::new((1, Token::Unit, EnumVariants::new(types)?));
let actual = ABIEncoder::encode(&[Token::Enum(enum_selector)])?.resolve(0);
assert_eq!(actual, expected);
Ok(())
}
#[test]
fn units_in_composite_types_are_encoded_in_one_word() -> Result<()> {
let expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5];
let actual =
ABIEncoder::encode(&[Token::Struct(vec![Token::Unit, Token::U32(5)])])?.resolve(0);
assert_eq!(actual, expected);
Ok(())
}
#[test]
fn enums_with_units_are_correctly_padded() -> Result<()> {
let discriminant = vec![0, 0, 0, 0, 0, 0, 0, 1];
let padding = vec![0; 32];
let expected: Vec<u8> = [discriminant, padding].into_iter().flatten().collect();
let types = vec![ParamType::B256, ParamType::Unit];
let enum_selector = Box::new((1, Token::Unit, EnumVariants::new(types)?));
let actual = ABIEncoder::encode(&[Token::Enum(enum_selector)])?.resolve(0);
assert_eq!(actual, expected);
Ok(())
}
#[test]
fn vector_has_ptr_cap_len_and_then_data() -> Result<()> {
let offset: u8 = 150;
let token = Token::Vector(vec![Token::U64(5)]);
let result = ABIEncoder::encode(&[token])?.resolve(offset as u64);
let ptr = [0, 0, 0, 0, 0, 0, 0, 3 * WORD_SIZE as u8 + offset];
let cap = [0, 0, 0, 0, 0, 0, 0, 1];
let len = [0, 0, 0, 0, 0, 0, 0, 1];
let data = [0, 0, 0, 0, 0, 0, 0, 5];
let expected = chain!(ptr, cap, len, data).collect::<Vec<_>>();
assert_eq!(result, expected);
Ok(())
}
#[test]
fn data_from_two_vectors_aggregated_at_the_end() -> Result<()> {
let offset: u8 = 40;
let vec_1 = Token::Vector(vec![Token::U64(5)]);
let vec_2 = Token::Vector(vec![Token::U64(6)]);
let result = ABIEncoder::encode(&[vec_1, vec_2])?.resolve(offset as u64);
let vec1_data_offset = 6 * WORD_SIZE as u8 + offset;
let vec1_ptr = [0, 0, 0, 0, 0, 0, 0, vec1_data_offset];
let vec1_cap = [0, 0, 0, 0, 0, 0, 0, 1];
let vec1_len = [0, 0, 0, 0, 0, 0, 0, 1];
let vec1_data = [0, 0, 0, 0, 0, 0, 0, 5];
let vec2_data_offset = vec1_data_offset + vec1_data.len() as u8;
let vec2_ptr = [0, 0, 0, 0, 0, 0, 0, vec2_data_offset];
let vec2_cap = [0, 0, 0, 0, 0, 0, 0, 1];
let vec2_len = [0, 0, 0, 0, 0, 0, 0, 1];
let vec2_data = [0, 0, 0, 0, 0, 0, 0, 6];
let expected = chain!(
vec1_ptr, vec1_cap, vec1_len, vec2_ptr, vec2_cap, vec2_len, vec1_data, vec2_data,
)
.collect::<Vec<_>>();
assert_eq!(result, expected);
Ok(())
}
#[test]
fn a_vec_in_an_enum() -> Result<()> {
let offset = 40;
let types = vec![ParamType::B256, ParamType::Vector(Box::new(ParamType::U64))];
let variants = EnumVariants::new(types)?;
let selector = (1, Token::Vector(vec![Token::U64(5)]), variants);
let token = Token::Enum(Box::new(selector));
let result = ABIEncoder::encode(&[token])?.resolve(offset as u64);
let discriminant = vec![0, 0, 0, 0, 0, 0, 0, 1];
const PADDING: usize = std::mem::size_of::<[u8; 32]>() - VEC_METADATA_SIZE;
let vec1_ptr = ((DISCRIMINANT_SIZE + PADDING + VEC_METADATA_SIZE + offset) as u64)
.to_be_bytes()
.to_vec();
let vec1_cap = [0, 0, 0, 0, 0, 0, 0, 1];
let vec1_len = [0, 0, 0, 0, 0, 0, 0, 1];
let vec1_data = [0, 0, 0, 0, 0, 0, 0, 5];
let expected = chain!(
discriminant,
vec![0; PADDING],
vec1_ptr,
vec1_cap,
vec1_len,
vec1_data
)
.collect::<Vec<u8>>();
assert_eq!(result, expected);
Ok(())
}
#[test]
fn an_enum_in_a_vec() -> Result<()> {
let offset = 40;
let types = vec![ParamType::B256, ParamType::U8];
let variants = EnumVariants::new(types)?;
let selector = (1, Token::U8(8), variants);
let enum_token = Token::Enum(Box::new(selector));
let vec_token = Token::Vector(vec![enum_token]);
let result = ABIEncoder::encode(&[vec_token])?.resolve(offset as u64);
const PADDING: usize = std::mem::size_of::<[u8; 32]>() - WORD_SIZE;
let vec1_ptr = ((VEC_METADATA_SIZE + offset) as u64).to_be_bytes().to_vec();
let vec1_cap = [0, 0, 0, 0, 0, 0, 0, 1];
let vec1_len = [0, 0, 0, 0, 0, 0, 0, 1];
let discriminant = 1u64.to_be_bytes();
let vec1_data = chain!(discriminant, [0; PADDING], 8u64.to_be_bytes()).collect::<Vec<_>>();
let expected = chain!(vec1_ptr, vec1_cap, vec1_len, vec1_data).collect::<Vec<u8>>();
assert_eq!(result, expected);
Ok(())
}
#[test]
fn a_vec_in_a_struct() -> Result<()> {
let offset = 40;
let token = Token::Struct(vec![Token::Vector(vec![Token::U64(5)]), Token::U8(9)]);
let result = ABIEncoder::encode(&[token])?.resolve(offset as u64);
let vec1_ptr = ((VEC_METADATA_SIZE + WORD_SIZE + offset) as u64)
.to_be_bytes()
.to_vec();
let vec1_cap = [0, 0, 0, 0, 0, 0, 0, 1];
let vec1_len = [0, 0, 0, 0, 0, 0, 0, 1];
let vec1_data = [0, 0, 0, 0, 0, 0, 0, 5];
let expected = chain!(
vec1_ptr,
vec1_cap,
vec1_len,
[0, 0, 0, 0, 0, 0, 0, 9],
vec1_data
)
.collect::<Vec<u8>>();
assert_eq!(result, expected);
Ok(())
}
#[test]
fn a_vec_in_a_vec() -> Result<()> {
let offset = 40;
let token = Token::Vector(vec![Token::Vector(vec![Token::U8(5), Token::U8(6)])]);
let result = ABIEncoder::encode(&[token])?.resolve(offset as u64);
let vec1_data_offset = (VEC_METADATA_SIZE + offset) as u64;
let vec1_ptr = vec1_data_offset.to_be_bytes().to_vec();
let vec1_cap = [0, 0, 0, 0, 0, 0, 0, 1];
let vec1_len = [0, 0, 0, 0, 0, 0, 0, 1];
let vec2_ptr = (vec1_data_offset + VEC_METADATA_SIZE as u64)
.to_be_bytes()
.to_vec();
let vec2_cap = [0, 0, 0, 0, 0, 0, 0, 2];
let vec2_len = [0, 0, 0, 0, 0, 0, 0, 2];
let vec2_data = [0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6];
let vec1_data = chain!(vec2_ptr, vec2_cap, vec2_len, vec2_data).collect::<Vec<_>>();
let expected = chain!(vec1_ptr, vec1_cap, vec1_len, vec1_data).collect::<Vec<u8>>();
assert_eq!(result, expected);
Ok(())
}
#[test]
fn encoding_bytes() -> Result<()> {
let token = Token::Bytes(vec![1, 2, 3]);
let offset = 40;
let encoded_bytes = ABIEncoder::encode(&[token])?.resolve(offset);
let ptr = [0, 0, 0, 0, 0, 0, 0, 64];
let cap = [0, 0, 0, 0, 0, 0, 0, 8];
let len = [0, 0, 0, 0, 0, 0, 0, 3];
let data = [1, 2, 3, 0, 0, 0, 0, 0];
let expected_encoded_bytes = [ptr, cap, len, data].concat();
assert_eq!(expected_encoded_bytes, encoded_bytes);
Ok(())
}
#[test]
fn encoding_raw_slices() -> Result<()> {
let token = Token::RawSlice(vec![1, 2, 3]);
let offset = 40;
let encoded_bytes = ABIEncoder::encode(&[token])?.resolve(offset);
let ptr = vec![0, 0, 0, 0, 0, 0, 0, 56];
let len = vec![0, 0, 0, 0, 0, 0, 0, 24];
let data = [
[0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 2],
[0, 0, 0, 0, 0, 0, 0, 3],
]
.concat();
let expected_encoded_bytes = [ptr, len, data].concat();
assert_eq!(expected_encoded_bytes, encoded_bytes);
Ok(())
}
}