fuels_programs/executable.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
use fuel_asm::{op, Instruction, RegId};
use fuels_core::{
constants::WORD_SIZE,
types::{
errors::Result,
transaction_builders::{Blob, BlobId, BlobTransactionBuilder},
},
Configurables,
};
use itertools::Itertools;
/// This struct represents a standard executable with its associated bytecode and configurables.
#[derive(Debug, Clone, PartialEq)]
pub struct Regular {
code: Vec<u8>,
configurables: Configurables,
}
impl Regular {
pub fn new(code: Vec<u8>, configurables: Configurables) -> Self {
Self {
code,
configurables,
}
}
}
/// Used to transform Script or Predicate code into a loader variant, where the code is uploaded as
/// a blob and the binary itself is substituted with code that will load the blob code and apply
/// the given configurables to the Script/Predicate.
#[derive(Debug, Clone, PartialEq)]
pub struct Executable<State> {
state: State,
}
impl Executable<Regular> {
pub fn from_bytes(code: Vec<u8>) -> Self {
Executable {
state: Regular::new(code, Default::default()),
}
}
/// Loads an `Executable<Regular>` from a file at the given path.
///
/// # Parameters
///
/// - `path`: The file path to load the executable from.
///
/// # Returns
///
/// A `Result` containing the `Executable<Regular>` or an error if loading fails.
pub fn load_from(path: &str) -> Result<Executable<Regular>> {
let code = std::fs::read(path)?;
Ok(Executable {
state: Regular::new(code, Default::default()),
})
}
pub fn with_configurables(self, configurables: impl Into<Configurables>) -> Self {
Executable {
state: Regular {
configurables: configurables.into(),
..self.state
},
}
}
pub fn data_offset_in_code(&self) -> Result<usize> {
extract_data_offset(&self.state.code)
}
/// Returns the code of the executable with configurables applied.
///
/// # Returns
///
/// The bytecode of the executable with configurables updated.
pub fn code(&self) -> Vec<u8> {
let mut code = self.state.code.clone();
self.state.configurables.update_constants_in(&mut code);
code
}
/// Converts the `Executable<Regular>` into an `Executable<Loader>`.
///
/// # Returns
///
/// A `Result` containing the `Executable<Loader>` or an error if loader code cannot be
/// generated for the given binary.
pub fn convert_to_loader(self) -> Result<Executable<Loader>> {
validate_loader_can_be_made_from_code(
self.state.code.clone(),
self.state.configurables.clone(),
)?;
Ok(Executable {
state: Loader {
code: self.state.code,
configurables: self.state.configurables,
},
})
}
}
pub struct Loader {
code: Vec<u8>,
configurables: Configurables,
}
impl Executable<Loader> {
pub fn with_configurables(self, configurables: impl Into<Configurables>) -> Self {
Executable {
state: Loader {
configurables: configurables.into(),
..self.state
},
}
}
pub fn data_offset_in_code(&self) -> usize {
self.code_with_offset().1
}
fn code_with_offset(&self) -> (Vec<u8>, usize) {
let mut code = self.state.code.clone();
self.state.configurables.update_constants_in(&mut code);
let blob_id = self.blob().id();
transform_into_configurable_loader(code, &blob_id)
.expect("checked before turning into a Executable<Loader>")
}
/// Returns the code of the loader executable with configurables applied.
pub fn code(&self) -> Vec<u8> {
self.code_with_offset().0
}
/// A Blob containing the original executable code minus the data section.
pub fn blob(&self) -> Blob {
let data_section_offset = extract_data_offset(&self.state.code)
.expect("checked before turning into a Executable<Loader>");
let code_without_data_section = self.state.code[..data_section_offset].to_vec();
Blob::new(code_without_data_section)
}
/// Uploads a blob containing the original executable code minus the data section.
pub async fn upload_blob(&self, account: impl fuels_accounts::Account) -> Result<()> {
let blob = self.blob();
let provider = account.try_provider()?;
if provider.blob_exists(blob.id()).await? {
return Ok(());
}
let mut tb = BlobTransactionBuilder::default().with_blob(self.blob());
account.adjust_for_fee(&mut tb, 0).await?;
account.add_witnesses(&mut tb)?;
let tx = tb.build(provider).await?;
provider
.send_transaction_and_await_commit(tx)
.await?
.check(None)?;
Ok(())
}
}
fn extract_data_offset(binary: &[u8]) -> Result<usize> {
if binary.len() < 16 {
return Err(fuels_core::error!(
Other,
"given binary is too short to contain a data offset, len: {}",
binary.len()
));
}
let data_offset: [u8; 8] = binary[8..16].try_into().expect("checked above");
Ok(u64::from_be_bytes(data_offset) as usize)
}
fn transform_into_configurable_loader(
binary: Vec<u8>,
blob_id: &BlobId,
) -> Result<(Vec<u8>, usize)> {
// The final code is going to have this structure (if the data section is non-empty):
// 1. loader instructions
// 2. blob id
// 3. length_of_data_section
// 4. the data_section (updated with configurables as needed)
const BLOB_ID_SIZE: u16 = 32;
const REG_ADDRESS_OF_DATA_AFTER_CODE: u8 = 0x10;
const REG_START_OF_LOADED_CODE: u8 = 0x11;
const REG_GENERAL_USE: u8 = 0x12;
let get_instructions = |num_of_instructions| {
// There are 3 main steps:
// 1. Load the blob content into memory
// 2. Load the data section right after the blob
// 3. Jump to the beginning of the memory where the blob was loaded
[
// 1. Load the blob content into memory
// Find the start of the hardcoded blob ID, which is located after the loader code ends.
op::move_(REG_ADDRESS_OF_DATA_AFTER_CODE, RegId::PC),
// hold the address of the blob ID.
op::addi(
REG_ADDRESS_OF_DATA_AFTER_CODE,
REG_ADDRESS_OF_DATA_AFTER_CODE,
num_of_instructions * Instruction::SIZE as u16,
),
// The code is going to be loaded from the current value of SP onwards, save
// the location into REG_START_OF_LOADED_CODE so we can jump into it at the end.
op::move_(REG_START_OF_LOADED_CODE, RegId::SP),
// REG_GENERAL_USE to hold the size of the blob.
op::bsiz(REG_GENERAL_USE, REG_ADDRESS_OF_DATA_AFTER_CODE),
// Push the blob contents onto the stack.
op::ldc(REG_ADDRESS_OF_DATA_AFTER_CODE, 0, REG_GENERAL_USE, 1),
// Move on to the data section length
op::addi(
REG_ADDRESS_OF_DATA_AFTER_CODE,
REG_ADDRESS_OF_DATA_AFTER_CODE,
BLOB_ID_SIZE,
),
// load the size of the data section into REG_GENERAL_USE
op::lw(REG_GENERAL_USE, REG_ADDRESS_OF_DATA_AFTER_CODE, 0),
// after we have read the length of the data section, we move the pointer to the actual
// data by skipping WORD_SIZE B.
op::addi(
REG_ADDRESS_OF_DATA_AFTER_CODE,
REG_ADDRESS_OF_DATA_AFTER_CODE,
WORD_SIZE as u16,
),
// load the data section of the executable
op::ldc(REG_ADDRESS_OF_DATA_AFTER_CODE, 0, REG_GENERAL_USE, 2),
// Jump into the memory where the contract is loaded.
// What follows is called _jmp_mem by the sway compiler.
// Subtract the address contained in IS because jmp will add it back.
op::sub(
REG_START_OF_LOADED_CODE,
REG_START_OF_LOADED_CODE,
RegId::IS,
),
// jmp will multiply by 4, so we need to divide to cancel that out.
op::divi(REG_START_OF_LOADED_CODE, REG_START_OF_LOADED_CODE, 4),
// Jump to the start of the contract we loaded.
op::jmp(REG_START_OF_LOADED_CODE),
]
};
let get_instructions_no_data_section = |num_of_instructions| {
// There are 2 main steps:
// 1. Load the blob content into memory
// 2. Jump to the beginning of the memory where the blob was loaded
[
// 1. Load the blob content into memory
// Find the start of the hardcoded blob ID, which is located after the loader code ends.
op::move_(REG_ADDRESS_OF_DATA_AFTER_CODE, RegId::PC),
// hold the address of the blob ID.
op::addi(
REG_ADDRESS_OF_DATA_AFTER_CODE,
REG_ADDRESS_OF_DATA_AFTER_CODE,
num_of_instructions * Instruction::SIZE as u16,
),
// The code is going to be loaded from the current value of SP onwards, save
// the location into REG_START_OF_LOADED_CODE so we can jump into it at the end.
op::move_(REG_START_OF_LOADED_CODE, RegId::SP),
// REG_GENERAL_USE to hold the size of the blob.
op::bsiz(REG_GENERAL_USE, REG_ADDRESS_OF_DATA_AFTER_CODE),
// Push the blob contents onto the stack.
op::ldc(REG_ADDRESS_OF_DATA_AFTER_CODE, 0, REG_GENERAL_USE, 1),
// Jump into the memory where the contract is loaded.
// What follows is called _jmp_mem by the sway compiler.
// Subtract the address contained in IS because jmp will add it back.
op::sub(
REG_START_OF_LOADED_CODE,
REG_START_OF_LOADED_CODE,
RegId::IS,
),
// jmp will multiply by 4, so we need to divide to cancel that out.
op::divi(REG_START_OF_LOADED_CODE, REG_START_OF_LOADED_CODE, 4),
// Jump to the start of the contract we loaded.
op::jmp(REG_START_OF_LOADED_CODE),
]
};
let offset = extract_data_offset(&binary)?;
if binary.len() < offset {
return Err(fuels_core::error!(
Other,
"data section offset is out of bounds, offset: {offset}, binary len: {}",
binary.len()
));
}
let data_section = binary[offset..].to_vec();
if !data_section.is_empty() {
let num_of_instructions = u16::try_from(get_instructions(0).len())
.expect("to never have more than u16::MAX instructions");
let instruction_bytes = get_instructions(num_of_instructions)
.into_iter()
.flat_map(|instruction| instruction.to_bytes())
.collect_vec();
let blob_bytes = blob_id.iter().copied().collect_vec();
let original_data_section_len_encoded = u64::try_from(data_section.len())
.expect("data section to be less than u64::MAX")
.to_be_bytes();
// The data section is placed after all of the instructions, the BlobId, and the number representing
// how big the data section is.
let new_data_section_offset =
instruction_bytes.len() + blob_bytes.len() + original_data_section_len_encoded.len();
let code = instruction_bytes
.into_iter()
.chain(blob_bytes)
.chain(original_data_section_len_encoded)
.chain(data_section)
.collect();
Ok((code, new_data_section_offset))
} else {
let num_of_instructions = u16::try_from(get_instructions_no_data_section(0).len())
.expect("to never have more than u16::MAX instructions");
let instruction_bytes = get_instructions_no_data_section(num_of_instructions)
.into_iter()
.flat_map(|instruction| instruction.to_bytes());
let blob_bytes = blob_id.iter().copied();
let code = instruction_bytes.chain(blob_bytes).collect_vec();
// there is no data section, so we point the offset to the end of the file
let new_data_section_offset = code.len();
Ok((code, new_data_section_offset))
}
}
fn validate_loader_can_be_made_from_code(
mut code: Vec<u8>,
configurables: Configurables,
) -> Result<()> {
configurables.update_constants_in(&mut code);
// BlobId currently doesn't affect our ability to produce the loader code
transform_into_configurable_loader(code, &Default::default())?;
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
use fuels_core::Configurables;
use std::io::Write;
use tempfile::NamedTempFile;
#[test]
fn test_executable_regular_from_bytes() {
// Given: Some bytecode
let code = vec![1u8, 2, 3, 4];
// When: Creating an Executable<Regular> from bytes
let executable = Executable::<Regular>::from_bytes(code.clone());
// Then: The executable should have the given code and default configurables
assert_eq!(executable.state.code, code);
assert_eq!(executable.state.configurables, Default::default());
}
#[test]
fn test_executable_regular_load_from() {
// Given: A temporary file containing some bytecode
let code = vec![5u8, 6, 7, 8];
let mut temp_file = NamedTempFile::new().expect("Failed to create temp file");
temp_file
.write_all(&code)
.expect("Failed to write to temp file");
let path = temp_file.path().to_str().unwrap();
// When: Loading an Executable<Regular> from the file
let executable_result = Executable::<Regular>::load_from(path);
// Then: The executable should be created successfully with the correct code
assert!(executable_result.is_ok());
let executable = executable_result.unwrap();
assert_eq!(executable.state.code, code);
assert_eq!(executable.state.configurables, Default::default());
}
#[test]
fn test_executable_regular_load_from_invalid_path() {
// Given: An invalid file path
let invalid_path = "/nonexistent/path/to/file";
// When: Attempting to load an Executable<Regular> from the invalid path
let executable_result = Executable::<Regular>::load_from(invalid_path);
// Then: The operation should fail with an error
assert!(executable_result.is_err());
}
#[test]
fn test_executable_regular_with_configurables() {
// Given: An Executable<Regular> and some configurables
let code = vec![1u8, 2, 3, 4];
let executable = Executable::<Regular>::from_bytes(code);
let configurables = Configurables::new(vec![(2, vec![1])]);
// When: Setting new configurables
let new_executable = executable.with_configurables(configurables.clone());
// Then: The executable should have the new configurables
assert_eq!(new_executable.state.configurables, configurables);
}
#[test]
fn test_executable_regular_code() {
// Given: An Executable<Regular> with some code and configurables
let code = vec![1u8, 2, 3, 4];
let configurables = Configurables::new(vec![(1, vec![1])]);
let executable =
Executable::<Regular>::from_bytes(code.clone()).with_configurables(configurables);
// When: Retrieving the code after applying configurables
let modified_code = executable.code();
assert_eq!(modified_code, vec![1, 1, 3, 4]);
}
#[test]
fn test_loader_extracts_code_and_data_section_correctly() {
// Given: An Executable<Regular> with valid code
let padding = vec![0; 8];
let offset = 20u64.to_be_bytes().to_vec();
let some_random_instruction = vec![1, 2, 3, 4];
let data_section = vec![5, 6, 7, 8];
let code = [
padding.clone(),
offset.clone(),
some_random_instruction.clone(),
data_section,
]
.concat();
let executable = Executable::<Regular>::from_bytes(code.clone());
// When: Converting to a loader
let loader = executable.convert_to_loader().unwrap();
let blob = loader.blob();
let data_stripped_code = [padding, offset, some_random_instruction].concat();
assert_eq!(blob.as_ref(), data_stripped_code);
let loader_code = loader.code();
let blob_id = blob.id();
assert_eq!(
loader_code,
transform_into_configurable_loader(code, &blob_id)
.unwrap()
.0
)
}
#[test]
fn test_executable_regular_convert_to_loader_with_invalid_code() {
// Given: An Executable<Regular> with invalid code (too short)
let code = vec![1u8, 2]; // Insufficient length for a valid data offset
let executable = Executable::<Regular>::from_bytes(code);
// When: Attempting to convert to a loader
let result = executable.convert_to_loader();
// Then: The conversion should fail with an error
assert!(result.is_err());
}
#[test]
fn executable_with_no_data_section() {
// to skip over the first 2 half words and skip over the offset itself, basically stating
// that there is no data section
let data_section_offset = 16u64;
let code = [vec![0; 8], data_section_offset.to_be_bytes().to_vec()].concat();
Executable::from_bytes(code).convert_to_loader().unwrap();
}
}