futures_buffered/futures_unordered_bounded.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
use core::{
fmt,
future::Future,
pin::Pin,
task::{Context, Poll},
};
use crate::{arc_slice::ArcSlice, slot_map::SlotMap};
use futures_core::{FusedStream, Stream};
/// A set of futures which may complete in any order.
///
/// Much like [`futures::stream::FuturesUnordered`](https://docs.rs/futures/0.3.25/futures/stream/struct.FuturesUnordered.html),
/// this is a thread-safe, `Pin` friendly, lifetime friendly, concurrent processing stream.
///
/// The is different to `FuturesUnordered` in that `FuturesUnorderedBounded` has a fixed capacity for processing count.
/// This means it's less flexible, but produces better memory efficiency.
///
/// ## Benchmarks
///
/// ### Speed
///
/// Running 65536 100us timers with 256 concurrent jobs in a single threaded tokio runtime:
///
/// ```text
/// FuturesUnordered time: [420.47 ms 422.21 ms 423.99 ms]
/// FuturesUnorderedBounded time: [366.02 ms 367.54 ms 369.05 ms]
/// ```
///
/// ### Memory usage
///
/// Running 512000 `Ready<i32>` futures with 256 concurrent jobs.
///
/// - count: the number of times alloc/dealloc was called
/// - alloc: the number of cumulative bytes allocated
/// - dealloc: the number of cumulative bytes deallocated
///
/// ```text
/// FuturesUnordered
/// count: 1024002
/// alloc: 40960144 B
/// dealloc: 40960000 B
///
/// FuturesUnorderedBounded
/// count: 2
/// alloc: 8264 B
/// dealloc: 0 B
/// ```
///
/// ### Conclusion
///
/// As you can see, `FuturesUnorderedBounded` massively reduces you memory overhead while providing a significant performance gain.
/// Perfect for if you want a fixed batch size
///
/// # Example
///
/// Making 1024 total HTTP requests, with a max concurrency of 128
///
/// ```
/// use futures::future::Future;
/// use futures::stream::StreamExt;
/// use futures_buffered::FuturesUnorderedBounded;
/// use hyper::client::conn::http1::{handshake, SendRequest};
/// use hyper::body::Incoming;
/// use hyper::{Request, Response};
/// use hyper_util::rt::TokioIo;
/// use tokio::net::TcpStream;
///
/// # #[cfg(miri)] fn main() {}
/// # #[cfg(not(miri))] #[tokio::main]
/// # async fn main() -> Result<(), Box<dyn std::error::Error>> {
/// // create a tcp connection
/// let stream = TcpStream::connect("example.com:80").await?;
///
/// // perform the http handshakes
/// let (mut rs, conn) = handshake(TokioIo::new(stream)).await?;
/// tokio::spawn(conn);
///
/// /// make http request to example.com and read the response
/// fn make_req(rs: &mut SendRequest<String>) -> impl Future<Output = hyper::Result<Response<Incoming>>> {
/// let req = Request::builder()
/// .header("Host", "example.com")
/// .method("GET")
/// .body(String::new())
/// .unwrap();
/// rs.send_request(req)
/// }
///
/// // create a queue that can hold 128 concurrent requests
/// let mut queue = FuturesUnorderedBounded::new(128);
///
/// // start up 128 requests
/// for _ in 0..128 {
/// queue.push(make_req(&mut rs));
/// }
/// // wait for a request to finish and start another to fill its place - up to 1024 total requests
/// for _ in 128..1024 {
/// queue.next().await;
/// queue.push(make_req(&mut rs));
/// }
/// // wait for the tail end to finish
/// for _ in 0..128 {
/// queue.next().await;
/// }
/// # Ok(()) }
/// ```
pub struct FuturesUnorderedBounded<F> {
pub(crate) tasks: SlotMap<F>,
pub(crate) shared: ArcSlice,
}
impl<F> Unpin for FuturesUnorderedBounded<F> {}
impl<F> FuturesUnorderedBounded<F> {
/// Constructs a new, empty [`FuturesUnorderedBounded`] with the given fixed capacity.
///
/// The returned [`FuturesUnorderedBounded`] does not contain any futures.
/// In this state, [`FuturesUnorderedBounded::poll_next`](Stream::poll_next) will
/// return [`Poll::Ready(None)`](Poll::Ready).
pub fn new(cap: usize) -> Self {
Self {
tasks: SlotMap::new(cap),
shared: ArcSlice::new(cap),
}
}
/// Push a future into the set.
///
/// This method adds the given future to the set. This method will not
/// call [`poll`](core::future::Future::poll) on the submitted future. The caller must
/// ensure that [`FuturesUnorderedBounded::poll_next`](Stream::poll_next) is called
/// in order to receive wake-up notifications for the given future.
///
/// # Panics
/// This method will panic if the buffer is currently full. See [`FuturesUnorderedBounded::try_push`] to get a result instead
#[track_caller]
pub fn push(&mut self, fut: F) {
if self.try_push(fut).is_err() {
panic!("attempted to push into a full `FuturesUnorderedBounded`");
}
}
/// Push a future into the set.
///
/// This method adds the given future to the set. This method will not
/// call [`poll`](core::future::Future::poll) on the submitted future. The caller must
/// ensure that [`FuturesUnorderedBounded::poll_next`](Stream::poll_next) is called
/// in order to receive wake-up notifications for the given future.
///
/// # Errors
/// This method will error if the buffer is currently full, returning the future back
pub fn try_push(&mut self, fut: F) -> Result<(), F> {
self.try_push_with(fut, core::convert::identity)
}
#[inline]
pub(crate) fn try_push_with<T>(&mut self, t: T, f: impl FnMut(T) -> F) -> Result<(), T> {
let i = self.tasks.insert_with(t, f)?;
// safety: i is always within capacity
unsafe {
self.shared.push(i);
}
Ok(())
}
/// Returns `true` if the set contains no futures.
pub fn is_empty(&self) -> bool {
self.tasks.is_empty()
}
/// Returns the number of futures contained in the set.
///
/// This represents the total number of in-flight futures.
pub fn len(&self) -> usize {
self.tasks.len()
}
/// Returns the number of futures that can be contained in the set.
pub fn capacity(&self) -> usize {
self.tasks.capacity()
}
}
type PollFn<F, O> = fn(Pin<&mut F>, cx: &mut Context<'_>) -> Poll<O>;
impl<F> FuturesUnorderedBounded<F> {
pub(crate) fn poll_inner_no_remove<O>(
&mut self,
cx: &mut Context<'_>,
poll_fn: PollFn<F, O>,
) -> Poll<Option<(usize, O)>> {
const MAX: usize = 61;
if self.is_empty() {
return Poll::Ready(None);
}
self.shared.register(cx.waker());
let mut count = 0;
loop {
count += 1;
// if we are in a pending only loop - let's break out.
if count > MAX {
cx.waker().wake_by_ref();
return Poll::Pending;
}
match unsafe { self.shared.pop() } {
crate::arc_slice::ReadySlot::None => return Poll::Pending,
crate::arc_slice::ReadySlot::Inconsistent => {
cx.waker().wake_by_ref();
return Poll::Pending;
}
crate::arc_slice::ReadySlot::Ready((i, waker)) => {
if let Some(task) = self.tasks.get(i) {
let mut cx = Context::from_waker(&waker);
let res = poll_fn(task, &mut cx);
if let Poll::Ready(x) = res {
return Poll::Ready(Some((i, x)));
}
}
}
}
}
}
}
impl<F: Future> FuturesUnorderedBounded<F> {
pub(crate) fn poll_inner(&mut self, cx: &mut Context<'_>) -> Poll<Option<(usize, F::Output)>> {
match self.poll_inner_no_remove(cx, F::poll) {
Poll::Ready(Some((i, x))) => {
self.tasks.remove(i);
Poll::Ready(Some((i, x)))
}
p => p,
}
}
}
impl<F: Future> Stream for FuturesUnorderedBounded<F> {
type Item = F::Output;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
match self.poll_inner(cx) {
Poll::Ready(Some((_, x))) => Poll::Ready(Some(x)),
Poll::Ready(None) => Poll::Ready(None),
Poll::Pending => Poll::Pending,
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len();
(len, Some(len))
}
}
impl<F> FromIterator<F> for FuturesUnorderedBounded<F> {
/// Constructs a new, empty [`FuturesUnorderedBounded`] with a fixed capacity that is the length of the iterator.
///
/// # Example
///
/// Making 1024 total HTTP requests, with a max concurrency of 128
///
/// ```
/// use futures::future::Future;
/// use futures::stream::StreamExt;
/// use futures_buffered::FuturesUnorderedBounded;
/// use hyper::client::conn::http1::{handshake, SendRequest};
/// use hyper::body::Incoming;
/// use hyper::{Request, Response};
/// use hyper_util::rt::TokioIo;
/// use tokio::net::TcpStream;
///
/// # #[cfg(miri)] fn main() {}
/// # #[cfg(not(miri))] #[tokio::main]
/// # async fn main() -> Result<(), Box<dyn std::error::Error>> {
/// // create a tcp connection
/// let stream = TcpStream::connect("example.com:80").await?;
///
/// // perform the http handshakes
/// let (mut rs, conn) = handshake(TokioIo::new(stream)).await?;
/// tokio::spawn(conn);
///
/// /// make http request to example.com and read the response
/// fn make_req(rs: &mut SendRequest<String>) -> impl Future<Output = hyper::Result<Response<Incoming>>> {
/// let req = Request::builder()
/// .header("Host", "example.com")
/// .method("GET")
/// .body(String::new())
/// .unwrap();
/// rs.send_request(req)
/// }
///
/// // create a queue with an initial 128 concurrent requests
/// let mut queue: FuturesUnorderedBounded<_> = (0..128).map(|_| make_req(&mut rs)).collect();
///
/// // wait for a request to finish and start another to fill its place - up to 1024 total requests
/// for _ in 128..1024 {
/// queue.next().await;
/// queue.push(make_req(&mut rs));
/// }
/// // wait for the tail end to finish
/// for _ in 0..128 {
/// queue.next().await;
/// }
/// # Ok(()) }
/// ```
fn from_iter<T: IntoIterator<Item = F>>(iter: T) -> Self {
// store the futures in our task list
let tasks = SlotMap::from_iter(iter);
// determine the actual capacity and create the shared state
let cap = tasks.len();
let shared = ArcSlice::new(cap);
for i in 0..cap {
// safety: i is always within capacity
unsafe {
shared.push(i);
}
}
// create the queue
Self { tasks, shared }
}
}
impl<Fut: Future> FusedStream for FuturesUnorderedBounded<Fut> {
fn is_terminated(&self) -> bool {
self.is_empty()
}
}
impl<Fut> fmt::Debug for FuturesUnorderedBounded<Fut> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("FuturesUnorderedBounded")
.field("len", &self.tasks.len())
.finish_non_exhaustive()
}
}
#[cfg(test)]
mod tests {
use super::*;
use core::{
cell::Cell,
future::{poll_fn, ready},
time::Duration,
};
use futures::{channel::oneshot, StreamExt};
use futures_test::task::noop_context;
use pin_project_lite::pin_project;
use std::time::Instant;
pin_project!(
struct PollCounter<'c, F> {
count: &'c Cell<usize>,
#[pin]
inner: F,
}
);
impl<F: Future> Future for PollCounter<'_, F> {
type Output = F::Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
self.count.set(self.count.get() + 1);
self.project().inner.poll(cx)
}
}
struct Yield {
done: bool,
}
impl Unpin for Yield {}
impl Future for Yield {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
if self.as_mut().done {
Poll::Ready(())
} else {
cx.waker().wake_by_ref();
self.as_mut().done = true;
Poll::Pending
}
}
}
fn yield_now(count: &Cell<usize>) -> PollCounter<'_, Yield> {
PollCounter {
count,
inner: Yield { done: false },
}
}
#[test]
fn single() {
let c = Cell::new(0);
let mut buffer = FuturesUnorderedBounded::new(10);
buffer.push(yield_now(&c));
futures::executor::block_on(buffer.next());
drop(buffer);
assert_eq!(c.into_inner(), 2);
}
#[test]
#[should_panic(expected = "attempted to push into a full `FuturesUnorderedBounded`")]
fn full() {
let mut buffer = FuturesUnorderedBounded::new(1);
buffer.push(ready(()));
buffer.push(ready(()));
}
#[test]
fn len() {
let mut buffer = FuturesUnorderedBounded::new(1);
assert_eq!(buffer.len(), 0);
assert!(buffer.is_empty());
assert_eq!(buffer.capacity(), 1);
assert_eq!(buffer.size_hint(), (0, Some(0)));
assert!(buffer.is_terminated());
buffer.push(ready(()));
assert_eq!(buffer.len(), 1);
assert!(!buffer.is_empty());
assert_eq!(buffer.capacity(), 1);
assert_eq!(buffer.size_hint(), (1, Some(1)));
assert!(!buffer.is_terminated());
futures::executor::block_on(buffer.next());
assert_eq!(buffer.len(), 0);
assert!(buffer.is_empty());
assert_eq!(buffer.capacity(), 1);
assert_eq!(buffer.size_hint(), (0, Some(0)));
assert!(buffer.is_terminated());
}
#[test]
fn from_iter() {
let buffer = FuturesUnorderedBounded::from_iter((0..10).map(|_| ready(())));
assert_eq!(buffer.len(), 10);
assert_eq!(buffer.capacity(), 10);
assert_eq!(buffer.size_hint(), (10, Some(10)));
}
#[test]
fn drop_while_waiting() {
let mut buffer = FuturesUnorderedBounded::new(10);
let waker = Cell::new(None);
buffer.push(poll_fn(|cx| {
waker.set(Some(cx.waker().clone()));
Poll::<()>::Pending
}));
assert_eq!(buffer.poll_next_unpin(&mut noop_context()), Poll::Pending);
drop(buffer);
let cx = waker.take().unwrap();
drop(cx);
}
#[test]
fn multi() {
fn wait(count: &Cell<usize>) -> PollCounter<'_, Yield> {
yield_now(count)
}
let c = Cell::new(0);
let mut buffer = FuturesUnorderedBounded::new(10);
// build up
for _ in 0..10 {
buffer.push(wait(&c));
}
// poll and insert
for _ in 0..100 {
assert!(futures::executor::block_on(buffer.next()).is_some());
buffer.push(wait(&c));
}
// drain down
for _ in 0..10 {
assert!(futures::executor::block_on(buffer.next()).is_some());
}
let count = c.into_inner();
assert_eq!(count, 220);
}
#[test]
fn very_slow_task() {
let c = Cell::new(0);
let now = Instant::now();
let mut buffer = FuturesUnorderedBounded::new(10);
// build up
for _ in 0..9 {
buffer.push(yield_now(&c));
}
// spawn a slow future among a bunch of fast ones.
// the test is to make sure this doesn't block the rest getting completed
buffer.push(yield_now(&c));
// poll and insert
for _ in 0..100 {
assert!(futures::executor::block_on(buffer.next()).is_some());
buffer.push(yield_now(&c));
}
// drain down
for _ in 0..10 {
assert!(futures::executor::block_on(buffer.next()).is_some());
}
let dur = now.elapsed();
assert!(dur < Duration::from_millis(2050));
let count = c.into_inner();
assert_eq!(count, 220);
}
#[cfg(not(miri))]
#[tokio::test]
async fn unordered_large() {
for i in 0..256 {
let mut queue: FuturesUnorderedBounded<_> = ((0..i).map(|_| async move {
tokio::time::sleep(Duration::from_nanos(1)).await;
}))
.collect();
for _ in 0..i {
queue.next().await.unwrap();
}
}
}
#[test]
fn correct_fairer_order() {
const LEN: usize = 256;
let mut buffer = FuturesUnorderedBounded::new(LEN);
let mut txs = vec![];
for _ in 0..LEN {
let (tx, rx) = oneshot::channel();
buffer.push(rx);
txs.push(tx);
}
for _ in 0..=(LEN / 61) {
assert!(buffer.poll_next_unpin(&mut noop_context()).is_pending());
}
for (i, tx) in txs.into_iter().enumerate() {
let _ = tx.send(i);
}
for i in 0..LEN {
let poll = buffer.poll_next_unpin(&mut noop_context());
assert_eq!(poll, Poll::Ready(Some(Ok(i))));
}
}
}