futures_buffered/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
//! # futures-buffered
//!
//! This project provides a single future structure: `FuturesUnorderedBounded`.
//!
//! Much like [`futures::stream::FuturesUnordered`](https://docs.rs/futures/0.3.25/futures/stream/struct.FuturesUnordered.html),
//! this is a thread-safe, `Pin` friendly, lifetime friendly, concurrent processing stream.
//!
//! The is different to `FuturesUnordered` in that `FuturesUnorderedBounded` has a fixed capacity for processing count.
//! This means it's less flexible, but produces better memory efficiency.
//!
//! ## Benchmarks
//!
//! ### Speed
//!
//! Running 65536 100us timers with 256 concurrent jobs in a single threaded tokio runtime:
//!
//! ```text
//! FuturesUnordered time: [420.47 ms 422.21 ms 423.99 ms]
//! FuturesUnorderedBounded time: [366.02 ms 367.54 ms 369.05 ms]
//! ```
//!
//! ### Memory usage
//!
//! Running 512000 `Ready<i32>` futures with 256 concurrent jobs.
//!
//! - count: the number of times alloc/dealloc was called
//! - alloc: the number of cumulative bytes allocated
//! - dealloc: the number of cumulative bytes deallocated
//!
//! ```text
//! FuturesUnordered
//! count: 1024002
//! alloc: 40960144 B
//! dealloc: 40960000 B
//!
//! FuturesUnorderedBounded
//! count: 2
//! alloc: 8264 B
//! dealloc: 0 B
//! ```
//!
//! ### Conclusion
//!
//! As you can see, `FuturesUnorderedBounded` massively reduces you memory overhead while providing a significant performance gain.
//! Perfect for if you want a fixed batch size
//!
//! # Example
//! ```
//! use futures::future::Future;
//! use futures::stream::StreamExt;
//! use futures_buffered::FuturesUnorderedBounded;
//! use hyper::client::conn::http1::{handshake, SendRequest};
//! use hyper::body::Incoming;
//! use hyper::{Request, Response};
//! use hyper_util::rt::TokioIo;
//! use tokio::net::TcpStream;
//!
//! # #[cfg(miri)] fn main() {}
//! # #[cfg(not(miri))] #[tokio::main]
//! # async fn main() -> Result<(), Box<dyn std::error::Error>> {
//! // create a tcp connection
//! let stream = TcpStream::connect("example.com:80").await?;
//!
//! // perform the http handshakes
//! let (mut rs, conn) = handshake(TokioIo::new(stream)).await?;
//! tokio::spawn(conn);
//!
//! /// make http request to example.com and read the response
//! fn make_req(rs: &mut SendRequest<String>) -> impl Future<Output = hyper::Result<Response<Incoming>>> {
//! let req = Request::builder()
//! .header("Host", "example.com")
//! .method("GET")
//! .body(String::new())
//! .unwrap();
//! rs.send_request(req)
//! }
//!
//! // create a queue that can hold 128 concurrent requests
//! let mut queue = FuturesUnorderedBounded::new(128);
//!
//! // start up 128 requests
//! for _ in 0..128 {
//! queue.push(make_req(&mut rs));
//! }
//! // wait for a request to finish and start another to fill its place - up to 1024 total requests
//! for _ in 128..1024 {
//! queue.next().await;
//! queue.push(make_req(&mut rs));
//! }
//! // wait for the tail end to finish
//! for _ in 0..128 {
//! queue.next().await;
//! }
//! # Ok(()) }
//! ```
#![no_std]
extern crate alloc;
#[cfg(test)]
#[macro_use(vec, dbg)]
extern crate std;
use core::future::Future;
use futures_core::Stream;
mod arc_slice;
mod buffered;
mod futures_ordered;
mod futures_ordered_bounded;
mod futures_unordered;
mod futures_unordered_bounded;
mod join_all;
mod merge_bounded;
mod merge_unbounded;
mod slot_map;
mod try_buffered;
mod try_join_all;
pub use buffered::{BufferUnordered, BufferedOrdered, BufferedStreamExt};
pub use futures_ordered::FuturesOrdered;
pub use futures_ordered_bounded::FuturesOrderedBounded;
pub use futures_unordered::FuturesUnordered;
pub use futures_unordered_bounded::FuturesUnorderedBounded;
pub use join_all::{join_all, JoinAll};
#[allow(deprecated)]
pub use merge_bounded::{Merge, MergeBounded};
pub use merge_unbounded::MergeUnbounded;
pub use try_buffered::{BufferedTryStreamExt, TryBufferUnordered, TryBufferedOrdered};
pub use try_join_all::{try_join_all, TryJoinAll};
mod private_try_future {
use core::future::Future;
pub trait Sealed {}
impl<F, T, E> Sealed for F where F: ?Sized + Future<Output = Result<T, E>> {}
}
/// A convenience for futures that return `Result` values that includes
/// a variety of adapters tailored to such futures.
///
/// This is [`futures::TryFuture`](futures_core::future::TryFuture) except it's stricter on the future super-trait.
pub trait TryFuture:
Future<Output = Result<Self::Ok, Self::Err>> + private_try_future::Sealed
{
type Ok;
type Err;
}
impl<T, E, F: ?Sized + Future<Output = Result<T, E>>> TryFuture for F {
type Ok = T;
type Err = E;
}
mod private_try_stream {
use futures_core::Stream;
pub trait Sealed {}
impl<S, T, E> Sealed for S where S: ?Sized + Stream<Item = Result<T, E>> {}
}
/// A convenience for streams that return `Result` values that includes
/// a variety of adapters tailored to such futures.
///
/// This is [`futures::TryStream`](futures_core::stream::TryStream) except it's stricter on the stream super-trait.
pub trait TryStream:
Stream<Item = Result<Self::Ok, Self::Err>> + private_try_stream::Sealed
{
type Ok;
type Err;
}
impl<T, E, S: ?Sized + Stream<Item = Result<T, E>>> TryStream for S {
type Ok = T;
type Err = E;
}