futures_buffered/
merge_unbounded.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
use alloc::vec::Vec;
use core::{
    pin::Pin,
    task::{Context, Poll},
};

use futures_core::Stream;

use crate::{futures_unordered::MIN_CAPACITY, FuturesUnorderedBounded, MergeBounded};

/// A combined stream that releases values in any order that they come.
///
/// This differs from [`crate::Merge`] in that [`MergeUnbounded`] does not have a fixed capacity
/// but instead grows on demand. It uses [`crate::FuturesUnordered`] under the hood.
///
/// # Example
///
/// ```
/// use std::future::ready;
/// use futures::stream::{self, StreamExt};
/// use futures::executor::block_on;
/// use futures_buffered::MergeUnbounded;
///
/// block_on(async {
///     let a = stream::once(ready(2));
///     let b = stream::once(ready(3));
///     let mut s = MergeUnbounded::from_iter([a, b]);
///
///     let mut counter = 0;
///     while let Some(n) = s.next().await {
///         if n == 3 {
///             s.push(stream::once(ready(4)));
///         }
///         counter += n;
///     }
///     assert_eq!(counter, 2+3+4);
/// })
/// ```
pub struct MergeUnbounded<S> {
    pub(crate) groups: Vec<MergeBounded<S>>,
    poll_next: usize,
}

impl<S> Default for MergeUnbounded<S> {
    fn default() -> Self {
        Self::new()
    }
}

impl<S> MergeUnbounded<S> {
    /// Create a new, empty [`MergeUnbounded`].
    ///
    /// Calling [`poll_next`](futures_core::Stream::poll_next) will return `Poll::Ready(None)`
    /// until a stream is added with [`Self::push`].
    pub const fn new() -> Self {
        Self {
            groups: Vec::new(),
            poll_next: 0,
        }
    }

    /// Push a stream into the set.
    ///
    /// This method adds the given stream to the set. This method will not
    /// call [`poll_next`](futures_core::Stream::poll_next) on the submitted stream. The caller must
    /// ensure that [`MergeUnbounded::poll_next`](Stream::poll_next) is called
    /// in order to receive wake-up notifications for the given stream.
    #[track_caller]
    pub fn push(&mut self, stream: S) {
        let last = match self.groups.last_mut() {
            Some(last) => last,
            None => {
                self.groups.push(MergeBounded {
                    streams: FuturesUnorderedBounded::new(MIN_CAPACITY),
                });
                self.groups.last_mut().unwrap()
            }
        };
        match last.try_push(stream) {
            Ok(()) => {}
            Err(stream) => {
                let mut next = MergeBounded {
                    streams: FuturesUnorderedBounded::new(last.streams.capacity() * 2),
                };
                next.push(stream);
                self.groups.push(next);
            }
        }
    }

    /// Returns `true` if there are no streams in the set.
    pub fn is_empty(&self) -> bool {
        self.groups.iter().all(|g| g.streams.is_empty())
    }

    /// Returns the number of streams currently in the set.
    pub fn len(&self) -> usize {
        self.groups.iter().map(|g| g.streams.len()).sum()
    }
}

impl<S: Stream + Unpin> Stream for MergeUnbounded<S> {
    type Item = S::Item;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        let Self { groups, poll_next } = &mut *self;
        if groups.is_empty() {
            return Poll::Ready(None);
        }

        for _ in 0..groups.len() {
            if *poll_next >= groups.len() {
                *poll_next = 0;
            }

            let poll = Pin::new(&mut groups[*poll_next]).poll_next(cx);
            match poll {
                Poll::Ready(Some(x)) => {
                    return Poll::Ready(Some(x));
                }
                Poll::Ready(None) => {
                    let group = groups.remove(*poll_next);
                    debug_assert!(group.streams.is_empty());

                    if groups.is_empty() {
                        // group should contain at least 1 set
                        groups.push(group);
                        return Poll::Ready(None);
                    }

                    // we do not want to drop the last set as it contains
                    // the largest allocation that we want to keep a hold of
                    if *poll_next == groups.len() {
                        groups.push(group);
                        *poll_next = 0;
                    }
                }
                Poll::Pending => {
                    *poll_next += 1;
                }
            }
        }
        Poll::Pending
    }
}

impl<S: Stream + Unpin> FromIterator<S> for MergeUnbounded<S> {
    fn from_iter<T>(iter: T) -> Self
    where
        T: IntoIterator<Item = S>,
    {
        let iter = iter.into_iter();
        // let mut this =
        //     Self::with_capacity(usize::max(iter.size_hint().0, MIN_CAPACITY));
        let mut this = Self::new();
        for stream in iter {
            this.push(stream);
        }
        this
    }
}

#[cfg(test)]
mod tests {
    use core::cell::RefCell;
    use core::task::Waker;

    use super::*;
    use alloc::collections::VecDeque;
    use alloc::rc::Rc;
    use futures::executor::block_on;
    use futures::executor::LocalPool;
    use futures::stream;
    use futures::task::LocalSpawnExt;
    use futures::StreamExt;

    #[test]
    fn merge_tuple_4() {
        block_on(async {
            let a = stream::repeat(2).take(2);
            let b = stream::repeat(3).take(3);
            let c = stream::repeat(5).take(5);
            let d = stream::repeat(7).take(7);
            let mut s: MergeUnbounded<_> = [a, b, c, d].into_iter().collect();

            let mut counter = 0;
            while let Some(n) = s.next().await {
                counter += n;
            }
            assert_eq!(counter, 4 + 9 + 25 + 49);
        });
    }

    #[test]
    fn add_streams() {
        block_on(async {
            let a = stream::repeat(2).take(2);
            let b = stream::repeat(3).take(3);
            let mut s = MergeUnbounded::default();
            assert_eq!(s.next().await, None);
            assert!(s.is_empty());
            assert_eq!(s.len(), 0);

            s.push(a);
            s.push(b);

            assert!(!s.is_empty());
            assert_eq!(s.len(), 2);

            let mut counter = 0;
            while let Some(n) = s.next().await {
                counter += n;
                assert!(!s.is_empty());
            }

            assert!(s.is_empty());
            assert_eq!(s.len(), 0);

            let b = stream::repeat(4).take(4);
            s.push(b);

            assert!(!s.is_empty());
            assert_eq!(s.len(), 1);

            while let Some(n) = s.next().await {
                counter += n;
            }

            assert_eq!(counter, 4 + 9 + 16);

            assert!(s.is_empty());
            assert_eq!(s.len(), 0);
        });
    }

    /// This test case uses channels so we'll have streams that return Pending from time to time.
    ///
    /// The purpose of this test is to make sure we have the waking logic working.
    #[test]
    fn merge_channels() {
        struct LocalChannel<T> {
            queue: VecDeque<T>,
            waker: Option<Waker>,
            closed: bool,
        }

        struct LocalReceiver<T> {
            channel: Rc<RefCell<LocalChannel<T>>>,
        }

        impl<T> Stream for LocalReceiver<T> {
            type Item = T;

            fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
                let mut channel = self.channel.borrow_mut();

                match channel.queue.pop_front() {
                    Some(item) => Poll::Ready(Some(item)),
                    None => {
                        if channel.closed {
                            Poll::Ready(None)
                        } else {
                            channel.waker = Some(cx.waker().clone());
                            Poll::Pending
                        }
                    }
                }
            }
        }

        struct LocalSender<T> {
            channel: Rc<RefCell<LocalChannel<T>>>,
        }

        impl<T> LocalSender<T> {
            fn send(&self, item: T) {
                let mut channel = self.channel.borrow_mut();

                channel.queue.push_back(item);

                let _ = channel.waker.take().map(Waker::wake);
            }
        }

        impl<T> Drop for LocalSender<T> {
            fn drop(&mut self) {
                let mut channel = self.channel.borrow_mut();
                channel.closed = true;
                let _ = channel.waker.take().map(Waker::wake);
            }
        }

        fn local_channel<T>() -> (LocalSender<T>, LocalReceiver<T>) {
            let channel = Rc::new(RefCell::new(LocalChannel {
                queue: VecDeque::new(),
                waker: None,
                closed: false,
            }));

            (
                LocalSender {
                    channel: channel.clone(),
                },
                LocalReceiver { channel },
            )
        }

        let mut pool = LocalPool::new();

        let done = Rc::new(RefCell::new(false));
        let done2 = done.clone();

        pool.spawner()
            .spawn_local(async move {
                let (send1, receive1) = local_channel();
                let (send2, receive2) = local_channel();
                let (send3, receive3) = local_channel();

                let (count, ()) = futures::future::join(
                    async {
                        let s: MergeUnbounded<_> =
                            [receive1, receive2, receive3].into_iter().collect();
                        s.fold(0, |a, b| async move { a + b }).await
                    },
                    async {
                        for i in 1..=4 {
                            send1.send(i);
                            send2.send(i);
                            send3.send(i);
                        }
                        drop(send1);
                        drop(send2);
                        drop(send3);
                    },
                )
                .await;

                assert_eq!(count, 30);

                *done2.borrow_mut() = true;
            })
            .unwrap();

        while !*done.borrow() {
            pool.run_until_stalled();
        }
    }
}