futures_buffered/
futures_ordered_bounded.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
use crate::FuturesUnorderedBounded;
use alloc::collections::binary_heap::{BinaryHeap, PeekMut};
use core::cmp::Ordering;
use core::fmt;
use core::iter::FromIterator;
use core::num::Wrapping;
use core::pin::Pin;
use futures_core::future::Future;
use futures_core::ready;
use futures_core::stream::Stream;
use futures_core::{
    task::{Context, Poll},
    FusedStream,
};
use pin_project_lite::pin_project;

pin_project! {
    #[must_use = "futures do nothing unless you `.await` or poll them"]
    #[derive(Debug)]
    pub(crate) struct OrderWrapper<T> {
        #[pin]
        pub data: T, // A future or a future's output
        pub index: usize,
    }
}

impl<T> PartialEq for OrderWrapper<T> {
    fn eq(&self, other: &Self) -> bool {
        self.index == other.index
    }
}

impl<T> Eq for OrderWrapper<T> {}

impl<T> PartialOrd for OrderWrapper<T> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<T> Ord for OrderWrapper<T> {
    fn cmp(&self, other: &Self) -> Ordering {
        // BinaryHeap is a max heap, so compare backwards here.
        other.index.cmp(&self.index)
    }
}

impl<T> Future for OrderWrapper<T>
where
    T: Future,
{
    type Output = OrderWrapper<T::Output>;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let index = self.index;
        self.project().data.poll(cx).map(|output| OrderWrapper {
            data: output,
            index,
        })
    }
}

/// An unbounded queue of futures.
///
/// This "combinator" is similar to `FuturesUnordered`, but it imposes an order
/// on top of the set of futures. While futures in the set will race to
/// completion in parallel, results will only be returned in the order their
/// originating futures were added to the queue.
///
/// Futures are pushed into this queue and their realized values are yielded in
/// order. This structure is optimized to manage a large number of futures.
/// Futures managed by `FuturesOrderedBounded` will only be polled when they generate
/// notifications. This reduces the required amount of work needed to coordinate
/// large numbers of futures.
///
/// When a `FuturesOrderedBounded` is first created, it does not contain any futures.
/// Calling `poll` in this state will result in `Poll::Ready(None))` to be
/// returned. Futures are submitted to the queue using `push`; however, the
/// future will **not** be polled at this point. `FuturesOrderedBounded` will only
/// poll managed futures when `FuturesOrderedBounded::poll` is called. As such, it
/// is important to call `poll` after pushing new futures.
///
/// If `FuturesOrderedBounded::poll` returns `Poll::Ready(None)` this means that
/// the queue is currently not managing any futures. A future may be submitted
/// to the queue at a later time. At that point, a call to
/// `FuturesOrderedBounded::poll` will either return the future's resolved value
/// **or** `Poll::Pending` if the future has not yet completed. When
/// multiple futures are submitted to the queue, `FuturesOrderedBounded::poll` will
/// return `Poll::Pending` until the first future completes, even if
/// some of the later futures have already completed.
///
/// Note that you can create a ready-made `FuturesOrderedBounded` via the
/// [`collect`](Iterator::collect) method, or you can start with an empty queue
/// with the `FuturesOrderedBounded::new` constructor.
#[must_use = "streams do nothing unless polled"]
pub struct FuturesOrderedBounded<T: Future> {
    pub(crate) in_progress_queue: FuturesUnorderedBounded<OrderWrapper<T>>,
    queued_outputs: BinaryHeap<OrderWrapper<T::Output>>,
    pub(crate) next_incoming_index: Wrapping<usize>,
    next_outgoing_index: Wrapping<usize>,
}

impl<T: Future> Unpin for FuturesOrderedBounded<T> {}

impl<Fut: Future> FuturesOrderedBounded<Fut> {
    /// Constructs a new, empty `FuturesOrderedBounded`
    ///
    /// The returned `FuturesOrderedBounded` does not contain any futures and, in this
    /// state, `FuturesOrderedBounded::poll_next` will return `Poll::Ready(None)`.
    pub fn new(capacity: usize) -> Self {
        Self {
            in_progress_queue: FuturesUnorderedBounded::new(capacity),
            queued_outputs: BinaryHeap::with_capacity(capacity - 1),
            next_incoming_index: Wrapping(0),
            next_outgoing_index: Wrapping(0),
        }
    }

    /// Returns the number of futures contained in the queue.
    ///
    /// This represents the total number of in-flight futures, both
    /// those currently processing and those that have completed but
    /// which are waiting for earlier futures to complete.
    pub fn len(&self) -> usize {
        self.in_progress_queue.len() + self.queued_outputs.len()
    }

    /// Returns `true` if the queue contains no futures
    pub fn is_empty(&self) -> bool {
        self.in_progress_queue.is_empty() && self.queued_outputs.is_empty()
    }

    /// Pushes a future to the back of the queue.
    ///
    /// This function submits the given future to the internal set for managing.
    /// This function will not call `poll` on the submitted future. The caller
    /// must ensure that `FuturesOrderedBounded::poll` is called in order to receive
    /// task notifications.
    ///
    /// # Errors
    /// This method will error if the buffer is currently full, returning the future back
    pub fn try_push_back(&mut self, future: Fut) -> Result<(), Fut> {
        self.in_progress_queue.try_push_with(future, |future| {
            let wrapped = OrderWrapper {
                data: future,
                index: self.next_incoming_index.0,
            };
            self.next_incoming_index += 1;
            wrapped
        })
    }

    /// Pushes a future to the front of the queue.
    ///
    /// This function submits the given future to the internal set for managing.
    /// This function will not call `poll` on the submitted future. The caller
    /// must ensure that `FuturesOrderedBounded::poll` is called in order to receive
    /// task notifications. This future will be the next future to be returned
    /// complete.
    ///
    /// # Errors
    /// This method will error if the buffer is currently full, returning the future back
    pub fn try_push_front(&mut self, future: Fut) -> Result<(), Fut> {
        self.in_progress_queue.try_push_with(future, |future| {
            self.next_outgoing_index -= 1;
            OrderWrapper {
                data: future,
                index: self.next_outgoing_index.0,
            }
        })
    }

    /// Pushes a future to the back of the queue.
    ///
    /// This function submits the given future to the internal set for managing.
    /// This function will not call `poll` on the submitted future. The caller
    /// must ensure that `FuturesOrderedBounded::poll` is called in order to receive
    /// task notifications.
    ///
    /// # Panics
    /// This method will panic if the buffer is currently full. See [`FuturesOrderedBounded::try_push_back`] to get a result instead
    #[track_caller]
    pub fn push_back(&mut self, future: Fut) {
        if self.try_push_back(future).is_err() {
            panic!("attempted to push into a full `FuturesOrderedBounded`");
        }
    }

    /// Pushes a future to the front of the queue.
    ///
    /// This function submits the given future to the internal set for managing.
    /// This function will not call `poll` on the submitted future. The caller
    /// must ensure that `FuturesOrderedBounded::poll` is called in order to receive
    /// task notifications. This future will be the next future to be returned
    /// complete.
    ///
    /// # Panics
    /// This method will panic if the buffer is currently full. See [`FuturesOrderedBounded::try_push_front`] to get a result instead
    #[track_caller]
    pub fn push_front(&mut self, future: Fut) {
        if self.try_push_front(future).is_err() {
            panic!("attempted to push into a full `FuturesOrderedBounded`");
        }
    }
}

impl<Fut: Future> Stream for FuturesOrderedBounded<Fut> {
    type Item = Fut::Output;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        const MSB: usize = !(usize::MAX >> 1);

        let this = &mut *self;

        // house keeping if the indices gets too high
        if this.next_outgoing_index.0 & MSB == MSB {
            let mut ready_queue = core::mem::take(&mut this.queued_outputs).into_vec();
            for entry in &mut ready_queue {
                entry.index ^= MSB;
            }
            this.queued_outputs = ready_queue.into();

            for task in this.in_progress_queue.tasks.iter_mut() {
                *task.project().index ^= MSB;
            }

            this.next_outgoing_index.0 ^= MSB;
            this.next_incoming_index.0 ^= MSB;
        }

        // Check to see if we've already received the next value
        if let Some(next_output) = this.queued_outputs.peek_mut() {
            if next_output.index == this.next_outgoing_index.0 {
                this.next_outgoing_index += 1;
                return Poll::Ready(Some(PeekMut::pop(next_output).data));
            }
        }

        loop {
            match ready!(Pin::new(&mut this.in_progress_queue).poll_next(cx)) {
                Some(output) => {
                    if output.index == this.next_outgoing_index.0 {
                        this.next_outgoing_index += 1;
                        return Poll::Ready(Some(output.data));
                    }

                    this.queued_outputs.push(output);
                }
                None => return Poll::Ready(None),
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.len();
        (len, Some(len))
    }
}

impl<Fut: Future> fmt::Debug for FuturesOrderedBounded<Fut> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "FuturesOrderedBounded {{ ... }}")
    }
}

impl<Fut: Future> FromIterator<Fut> for FuturesOrderedBounded<Fut> {
    fn from_iter<T>(iter: T) -> Self
    where
        T: IntoIterator<Item = Fut>,
    {
        let mut index = Wrapping(0);
        let in_progress_queue = FuturesUnorderedBounded::from_iter(iter.into_iter().map(|data| {
            let next_index = index + Wrapping(1);
            OrderWrapper {
                data,
                index: core::mem::replace(&mut index, next_index).0,
            }
        }));
        Self {
            in_progress_queue,
            queued_outputs: BinaryHeap::new(),
            next_incoming_index: index,
            next_outgoing_index: Wrapping(0),
        }
    }
}

impl<Fut: Future> FusedStream for FuturesOrderedBounded<Fut> {
    fn is_terminated(&self) -> bool {
        self.in_progress_queue.is_terminated() && self.queued_outputs.is_empty()
    }
}

impl<Fut: Future> Extend<Fut> for FuturesOrderedBounded<Fut> {
    fn extend<I>(&mut self, iter: I)
    where
        I: IntoIterator<Item = Fut>,
    {
        for item in iter {
            self.push_back(item);
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::FuturesOrderedBounded;
    use core::{future::ready, task::Poll};
    use futures::{Stream, StreamExt};
    use futures_test::task::noop_context;

    #[test]
    fn ordered() {
        let mut buffer = FuturesOrderedBounded::new(10);

        for i in 0..10 {
            buffer.push_back(ready(i));
        }

        for i in 0..10 {
            assert_eq!(
                buffer.poll_next_unpin(&mut noop_context()),
                Poll::Ready(Some(i))
            );
        }
    }

    #[test]
    fn ordered_front() {
        let mut buffer = FuturesOrderedBounded::new(10);

        for i in 0..10 {
            buffer.push_front(ready(i));
        }

        for i in (0..10).rev() {
            assert_eq!(
                buffer.poll_next_unpin(&mut noop_context()),
                Poll::Ready(Some(i))
            );
        }
    }

    #[test]
    #[should_panic(expected = "attempted to push into a full `FuturesOrderedBounded`")]
    fn full_back() {
        let mut buffer = FuturesOrderedBounded::new(1);
        buffer.push_back(ready(()));
        buffer.push_back(ready(()));
    }

    #[test]
    #[should_panic(expected = "attempted to push into a full `FuturesOrderedBounded`")]
    fn full_front() {
        let mut buffer = FuturesOrderedBounded::new(1);
        buffer.push_front(ready(()));
        buffer.push_front(ready(()));
    }

    #[test]
    fn from_iter() {
        let buffer = FuturesOrderedBounded::from_iter((0..10).map(|_| ready(())));

        assert_eq!(buffer.len(), 10);
        assert_eq!(buffer.size_hint(), (10, Some(10)));
    }
}