futures_concurrency/future/future_group.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
use alloc::collections::BTreeSet;
use core::fmt::{self, Debug};
use core::ops::{Deref, DerefMut};
use core::pin::Pin;
use core::task::{Context, Poll};
use futures_core::stream::Stream;
use futures_core::Future;
use slab::Slab;
use crate::utils::{PollState, PollVec, WakerVec};
/// A growable group of futures which act as a single unit.
///
/// # Example
///
/// **Basic example**
///
/// ```rust
/// use futures_concurrency::future::FutureGroup;
/// use futures_lite::StreamExt;
/// use std::future;
///
/// # futures_lite::future::block_on(async {
/// let mut group = FutureGroup::new();
/// group.insert(future::ready(2));
/// group.insert(future::ready(4));
///
/// let mut out = 0;
/// while let Some(num) = group.next().await {
/// out += num;
/// }
/// assert_eq!(out, 6);
/// # });
/// ```
///
/// **Update the group on every iteration**
///
/// ```
/// use futures_concurrency::future::FutureGroup;
/// use lending_stream::prelude::*;
/// use std::future;
///
/// # fn main() { futures_lite::future::block_on(async {
/// let mut group = FutureGroup::new();
/// group.insert(future::ready(4));
///
/// let mut index = 3;
/// let mut out = 0;
/// let mut group = group.lend_mut();
/// while let Some((group, num)) = group.next().await {
/// if index != 0 {
/// group.insert(future::ready(index));
/// index -= 1;
/// }
/// out += num;
/// }
/// assert_eq!(out, 10);
/// # });}
/// ```
#[must_use = "`FutureGroup` does nothing if not iterated over"]
#[pin_project::pin_project]
pub struct FutureGroup<F> {
#[pin]
futures: Slab<F>,
wakers: WakerVec,
states: PollVec,
keys: BTreeSet<usize>,
capacity: usize,
}
impl<T: Debug> Debug for FutureGroup<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("FutureGroup")
.field("slab", &"[..]")
.field("len", &self.len())
.field("capacity", &self.capacity)
.finish()
}
}
impl<T> Default for FutureGroup<T> {
fn default() -> Self {
Self::new()
}
}
impl<F> FutureGroup<F> {
/// Create a new instance of `FutureGroup`.
///
/// # Example
///
/// ```rust
/// use futures_concurrency::future::FutureGroup;
///
/// let group = FutureGroup::new();
/// # let group: FutureGroup<usize> = group;
/// ```
pub fn new() -> Self {
Self::with_capacity(0)
}
/// Create a new instance of `FutureGroup` with a given capacity.
///
/// # Example
///
/// ```rust
/// use futures_concurrency::future::FutureGroup;
///
/// let group = FutureGroup::with_capacity(2);
/// # let group: FutureGroup<usize> = group;
/// ```
pub fn with_capacity(capacity: usize) -> Self {
Self {
futures: Slab::with_capacity(capacity),
wakers: WakerVec::new(capacity),
states: PollVec::new(capacity),
keys: BTreeSet::new(),
capacity,
}
}
/// Return the number of futures currently active in the group.
///
/// # Example
///
/// ```rust
/// use futures_concurrency::future::FutureGroup;
/// use futures_lite::StreamExt;
/// use std::future;
///
/// let mut group = FutureGroup::with_capacity(2);
/// assert_eq!(group.len(), 0);
/// group.insert(future::ready(12));
/// assert_eq!(group.len(), 1);
/// ```
#[inline(always)]
pub fn len(&self) -> usize {
self.futures.len()
}
/// Return the capacity of the `FutureGroup`.
///
/// # Example
///
/// ```rust
/// use futures_concurrency::future::FutureGroup;
/// use futures_lite::stream;
///
/// let group = FutureGroup::with_capacity(2);
/// assert_eq!(group.capacity(), 2);
/// # let group: FutureGroup<usize> = group;
/// ```
pub fn capacity(&self) -> usize {
self.capacity
}
/// Returns true if there are no futures currently active in the group.
///
/// # Example
///
/// ```rust
/// use futures_concurrency::future::FutureGroup;
/// use std::future;
///
/// let mut group = FutureGroup::with_capacity(2);
/// assert!(group.is_empty());
/// group.insert(future::ready(12));
/// assert!(!group.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.futures.is_empty()
}
/// Removes a stream from the group. Returns whether the value was present in
/// the group.
///
/// # Example
///
/// ```
/// use futures_concurrency::future::FutureGroup;
/// use std::future;
///
/// # futures_lite::future::block_on(async {
/// let mut group = FutureGroup::new();
/// let key = group.insert(future::ready(4));
/// assert_eq!(group.len(), 1);
/// group.remove(key);
/// assert_eq!(group.len(), 0);
/// # })
/// ```
pub fn remove(&mut self, key: Key) -> bool {
let is_present = self.keys.remove(&key.0);
if is_present {
self.states[key.0].set_none();
self.futures.remove(key.0);
}
is_present
}
/// Returns `true` if the `FutureGroup` contains a value for the specified key.
///
/// # Example
///
/// ```
/// use futures_concurrency::future::FutureGroup;
/// use std::future;
///
/// # futures_lite::future::block_on(async {
/// let mut group = FutureGroup::new();
/// let key = group.insert(future::ready(4));
/// assert!(group.contains_key(key));
/// group.remove(key);
/// assert!(!group.contains_key(key));
/// # })
/// ```
pub fn contains_key(&mut self, key: Key) -> bool {
self.keys.contains(&key.0)
}
/// Reserves capacity for `additional` more futures to be inserted.
/// Does nothing if the capacity is already sufficient.
///
/// # Example
///
/// ```rust
/// use futures_concurrency::future::FutureGroup;
/// use std::future::Ready;
/// # futures_lite::future::block_on(async {
/// let mut group: FutureGroup<Ready<usize>> = FutureGroup::with_capacity(0);
/// assert_eq!(group.capacity(), 0);
/// group.reserve(10);
/// assert_eq!(group.capacity(), 10);
///
/// // does nothing if capacity is sufficient
/// group.reserve(5);
/// assert_eq!(group.capacity(), 10);
/// # })
/// ```
pub fn reserve(&mut self, additional: usize) {
if self.len() + additional < self.capacity {
return;
}
let new_cap = self.capacity + additional;
self.wakers.resize(new_cap);
self.states.resize(new_cap);
self.futures.reserve_exact(additional);
self.capacity = new_cap;
}
}
impl<F: Future> FutureGroup<F> {
/// Insert a new future into the group.
///
/// # Example
///
/// ```rust
/// use futures_concurrency::future::FutureGroup;
/// use std::future;
///
/// let mut group = FutureGroup::with_capacity(2);
/// group.insert(future::ready(12));
/// ```
pub fn insert(&mut self, future: F) -> Key
where
F: Future,
{
if self.capacity <= self.len() {
self.reserve(self.capacity * 2 + 1);
}
let index = self.futures.insert(future);
self.keys.insert(index);
// Set the corresponding state
self.states[index].set_pending();
self.wakers.readiness().set_ready(index);
Key(index)
}
#[allow(unused)]
/// Insert a value into a pinned `FutureGroup`
///
/// This method is private because it serves as an implementation detail for
/// `ConcurrentStream`. We should never expose this publicly, as the entire
/// point of this crate is that we abstract the futures poll machinery away
/// from end-users.
pub(crate) fn insert_pinned(self: Pin<&mut Self>, future: F) -> Key
where
F: Future,
{
let mut this = self.project();
// SAFETY: inserting a value into the futures slab does not ever move
// any of the existing values.
let index = unsafe { this.futures.as_mut().get_unchecked_mut() }.insert(future);
this.keys.insert(index);
let key = Key(index);
// If our slab allocated more space we need to
// update our tracking structures along with it.
let max_len = this.futures.as_ref().capacity().max(index);
this.wakers.resize(max_len);
this.states.resize(max_len);
// Set the corresponding state
this.states[index].set_pending();
let mut readiness = this.wakers.readiness();
readiness.set_ready(index);
key
}
/// Create a stream which also yields the key of each item.
///
/// # Example
///
/// ```rust
/// use futures_concurrency::future::FutureGroup;
/// use futures_lite::StreamExt;
/// use std::future;
///
/// # futures_lite::future::block_on(async {
/// let mut group = FutureGroup::new();
/// group.insert(future::ready(2));
/// group.insert(future::ready(4));
///
/// let mut out = 0;
/// let mut group = group.keyed();
/// while let Some((_key, num)) = group.next().await {
/// out += num;
/// }
/// assert_eq!(out, 6);
/// # });
/// ```
pub fn keyed(self) -> Keyed<F> {
Keyed { group: self }
}
}
impl<F: Future> FutureGroup<F> {
fn poll_next_inner(
self: Pin<&mut Self>,
cx: &Context<'_>,
) -> Poll<Option<(Key, <F as Future>::Output)>> {
let mut this = self.project();
// Short-circuit if we have no futures to iterate over
if this.futures.is_empty() {
return Poll::Ready(None);
}
// Set the top-level waker and check readiness
let mut readiness = this.wakers.readiness();
readiness.set_waker(cx.waker());
if !readiness.any_ready() {
// Nothing is ready yet
return Poll::Pending;
}
// Setup our futures state
let mut ret = Poll::Pending;
let states = this.states;
// SAFETY: We unpin the future group so we can later individually access
// single futures. Either to read from them or to drop them.
let futures = unsafe { this.futures.as_mut().get_unchecked_mut() };
for index in this.keys.iter().cloned() {
if states[index].is_pending() && readiness.clear_ready(index) {
// unlock readiness so we don't deadlock when polling
#[allow(clippy::drop_non_drop)]
drop(readiness);
// Obtain the intermediate waker.
let mut cx = Context::from_waker(this.wakers.get(index).unwrap());
// SAFETY: this future here is a projection from the futures
// vec, which we're reading from.
let future = unsafe { Pin::new_unchecked(&mut futures[index]) };
match future.poll(&mut cx) {
Poll::Ready(item) => {
// Set the return type for the function
ret = Poll::Ready(Some((Key(index), item)));
// Remove all associated data with the future
// The only data we can't remove directly is the key entry.
states[index] = PollState::None;
futures.remove(index);
break;
}
// Keep looping if there is nothing for us to do
Poll::Pending => {}
};
// Lock readiness so we can use it again
readiness = this.wakers.readiness();
}
}
// Now that we're no longer borrowing `this.keys` we can remove
// the current key from the set
if let Poll::Ready(Some((key, _))) = ret {
this.keys.remove(&key.0);
}
ret
}
}
impl<F: Future> Stream for FutureGroup<F> {
type Item = <F as Future>::Output;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
match self.poll_next_inner(cx) {
Poll::Ready(Some((_key, item))) => Poll::Ready(Some(item)),
Poll::Ready(None) => Poll::Ready(None),
Poll::Pending => Poll::Pending,
}
}
}
impl<F: Future> Extend<F> for FutureGroup<F> {
fn extend<T: IntoIterator<Item = F>>(&mut self, iter: T) {
let iter = iter.into_iter();
let len = iter.size_hint().1.unwrap_or_default();
self.reserve(len);
for future in iter {
self.insert(future);
}
}
}
impl<F: Future> FromIterator<F> for FutureGroup<F> {
fn from_iter<T: IntoIterator<Item = F>>(iter: T) -> Self {
let mut this = Self::new();
this.extend(iter);
this
}
}
/// A key used to index into the `FutureGroup` type.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Key(usize);
/// Iterate over items in the futures group with their associated keys.
#[derive(Debug)]
#[pin_project::pin_project]
pub struct Keyed<F: Future> {
#[pin]
group: FutureGroup<F>,
}
impl<F: Future> Deref for Keyed<F> {
type Target = FutureGroup<F>;
fn deref(&self) -> &Self::Target {
&self.group
}
}
impl<F: Future> DerefMut for Keyed<F> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.group
}
}
impl<F: Future> Stream for Keyed<F> {
type Item = (Key, <F as Future>::Output);
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let mut this = self.project();
this.group.as_mut().poll_next_inner(cx)
}
}
#[cfg(test)]
mod test {
use super::FutureGroup;
use core::future;
use futures_lite::prelude::*;
#[test]
fn smoke() {
futures_lite::future::block_on(async {
let mut group = FutureGroup::new();
group.insert(future::ready(2));
group.insert(future::ready(4));
let mut out = 0;
while let Some(num) = group.next().await {
out += num;
}
assert_eq!(out, 6);
assert_eq!(group.len(), 0);
assert!(group.is_empty());
});
}
#[test]
fn capacity_grow_on_insert() {
futures_lite::future::block_on(async {
let mut group = FutureGroup::new();
let cap = group.capacity();
group.insert(future::ready(1));
assert!(group.capacity() > cap);
});
}
}