futures_executor/thread_pool.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
use std::prelude::v1::*;
use std::io;
use std::sync::{Arc, Mutex};
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::mpsc;
use std::thread;
use std::fmt;
use futures_core::*;
use futures_core::task::{self, Wake, Waker, LocalMap};
use futures_core::executor::{Executor, SpawnError};
use futures_core::never::Never;
use enter;
use num_cpus;
use unpark_mutex::UnparkMutex;
/// A general-purpose thread pool for scheduling asynchronous tasks.
///
/// The thread pool multiplexes any number of tasks onto a fixed number of
/// worker threads.
///
/// This type is a clonable handle to the threadpool itself.
/// Cloning it will only create a new reference, not a new threadpool.
pub struct ThreadPool {
state: Arc<PoolState>,
}
/// Thread pool configuration object.
pub struct ThreadPoolBuilder {
pool_size: usize,
stack_size: usize,
name_prefix: Option<String>,
after_start: Option<Arc<Fn(usize) + Send + Sync>>,
before_stop: Option<Arc<Fn(usize) + Send + Sync>>,
}
trait AssertSendSync: Send + Sync {}
impl AssertSendSync for ThreadPool {}
struct PoolState {
tx: Mutex<mpsc::Sender<Message>>,
rx: Mutex<mpsc::Receiver<Message>>,
cnt: AtomicUsize,
size: usize,
}
impl fmt::Debug for ThreadPool {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("ThreadPool")
.field("size", &self.state.size)
.finish()
}
}
impl fmt::Debug for ThreadPoolBuilder {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("ThreadPoolBuilder")
.field("pool_size", &self.pool_size)
.field("name_prefix", &self.name_prefix)
.finish()
}
}
enum Message {
Run(Task),
Close,
}
impl ThreadPool {
/// Creates a new thread pool with the default configuration.
///
/// See documentation for the methods in
/// [`ThreadPoolBuilder`](::ThreadPoolBuilder) for details on the default
/// configuration.
pub fn new() -> Result<ThreadPool, io::Error> {
ThreadPoolBuilder::new().create()
}
/// Create a default thread pool configuration, which can then be customized.
///
/// See documentation for the methods in
/// [`ThreadPoolBuilder`](::ThreadPoolBuilder) for details on the default
/// configuration.
pub fn builder() -> ThreadPoolBuilder {
ThreadPoolBuilder::new()
}
/// Runs the given future with this thread pool as the default executor for
/// spawning tasks.
///
/// **This function will block the calling thread** until the given future
/// is complete. While executing that future, any tasks spawned onto the
/// default executor will be routed to this thread pool.
///
/// Note that the function will return when the provided future completes,
/// even if some of the tasks it spawned are still running.
pub fn run<F: Future>(&mut self, f: F) -> Result<F::Item, F::Error> {
::LocalPool::new().run_until(f, self)
}
}
impl Executor for ThreadPool {
fn spawn(&mut self, f: Box<Future<Item = (), Error = Never> + Send>) -> Result<(), SpawnError> {
let task = Task {
spawn: f,
map: LocalMap::new(),
wake_handle: Arc::new(WakeHandle {
exec: self.clone(),
mutex: UnparkMutex::new(),
}),
exec: self.clone(),
};
self.state.send(Message::Run(task));
Ok(())
}
}
impl PoolState {
fn send(&self, msg: Message) {
self.tx.lock().unwrap().send(msg).unwrap();
}
fn work(&self,
idx: usize,
after_start: Option<Arc<Fn(usize) + Send + Sync>>,
before_stop: Option<Arc<Fn(usize) + Send + Sync>>) {
let _scope = enter().unwrap();
after_start.map(|fun| fun(idx));
loop {
let msg = self.rx.lock().unwrap().recv().unwrap();
match msg {
Message::Run(r) => r.run(),
Message::Close => break,
}
}
before_stop.map(|fun| fun(idx));
}
}
impl Clone for ThreadPool {
fn clone(&self) -> ThreadPool {
self.state.cnt.fetch_add(1, Ordering::Relaxed);
ThreadPool { state: self.state.clone() }
}
}
impl Drop for ThreadPool {
fn drop(&mut self) {
if self.state.cnt.fetch_sub(1, Ordering::Relaxed) == 1 {
for _ in 0..self.state.size {
self.state.send(Message::Close);
}
}
}
}
impl ThreadPoolBuilder {
/// Create a default thread pool configuration.
///
/// See the other methods on this type for details on the defaults.
pub fn new() -> ThreadPoolBuilder {
ThreadPoolBuilder {
pool_size: num_cpus::get(),
stack_size: 0,
name_prefix: None,
after_start: None,
before_stop: None,
}
}
/// Set size of a future ThreadPool
///
/// The size of a thread pool is the number of worker threads spawned. By
/// default, this is equal to the number of CPU cores.
pub fn pool_size(&mut self, size: usize) -> &mut Self {
self.pool_size = size;
self
}
/// Set stack size of threads in the pool.
///
/// By default, worker threads use Rust's standard stack size.
pub fn stack_size(&mut self, stack_size: usize) -> &mut Self {
self.stack_size = stack_size;
self
}
/// Set thread name prefix of a future ThreadPool.
///
/// Thread name prefix is used for generating thread names. For example, if prefix is
/// `my-pool-`, then threads in the pool will get names like `my-pool-1` etc.
///
/// By default, worker threads are assigned Rust's standard thread name.
pub fn name_prefix<S: Into<String>>(&mut self, name_prefix: S) -> &mut Self {
self.name_prefix = Some(name_prefix.into());
self
}
/// Execute the closure `f` immediately after each worker thread is started,
/// but before running any tasks on it.
///
/// This hook is intended for bookkeeping and monitoring.
/// The closure `f` will be dropped after the `builder` is dropped
/// and all worker threads in the pool have executed it.
///
/// The closure provided will receive an index corresponding to the worker
/// thread it's running on.
pub fn after_start<F>(&mut self, f: F) -> &mut Self
where F: Fn(usize) + Send + Sync + 'static
{
self.after_start = Some(Arc::new(f));
self
}
/// Execute closure `f` just prior to shutting down each worker thread.
///
/// This hook is intended for bookkeeping and monitoring.
/// The closure `f` will be dropped after the `builder` is droppped
/// and all threads in the pool have executed it.
///
/// The closure provided will receive an index corresponding to the worker
/// thread it's running on.
pub fn before_stop<F>(&mut self, f: F) -> &mut Self
where F: Fn(usize) + Send + Sync + 'static
{
self.before_stop = Some(Arc::new(f));
self
}
/// Create a [`ThreadPool`](::ThreadPool) with the given configuration.
///
/// # Panics
///
/// Panics if `pool_size == 0`.
pub fn create(&mut self) -> Result<ThreadPool, io::Error> {
let (tx, rx) = mpsc::channel();
let pool = ThreadPool {
state: Arc::new(PoolState {
tx: Mutex::new(tx),
rx: Mutex::new(rx),
cnt: AtomicUsize::new(1),
size: self.pool_size,
}),
};
assert!(self.pool_size > 0);
for counter in 0..self.pool_size {
let state = pool.state.clone();
let after_start = self.after_start.clone();
let before_stop = self.before_stop.clone();
let mut thread_builder = thread::Builder::new();
if let Some(ref name_prefix) = self.name_prefix {
thread_builder = thread_builder.name(format!("{}{}", name_prefix, counter));
}
if self.stack_size > 0 {
thread_builder = thread_builder.stack_size(self.stack_size);
}
thread_builder.spawn(move || state.work(counter, after_start, before_stop))?;
}
Ok(pool)
}
}
/// Units of work submitted to an `Executor`, currently only created
/// internally.
struct Task {
spawn: Box<Future<Item = (), Error = Never> + Send>,
map: LocalMap,
exec: ThreadPool,
wake_handle: Arc<WakeHandle>,
}
struct WakeHandle {
mutex: UnparkMutex<Task>,
exec: ThreadPool,
}
impl Task {
/// Actually run the task (invoking `poll` on its future) on the current
/// thread.
pub fn run(self) {
let Task { mut spawn, wake_handle, mut map, mut exec } = self;
let waker = Waker::from(wake_handle.clone());
// SAFETY: the ownership of this `Task` object is evidence that
// we are in the `POLLING`/`REPOLL` state for the mutex.
unsafe {
wake_handle.mutex.start_poll();
loop {
let res = {
let mut cx = task::Context::new(&mut map, &waker, &mut exec);
spawn.poll(&mut cx)
};
match res {
Ok(Async::Pending) => {}
Ok(Async::Ready(())) => return wake_handle.mutex.complete(),
Err(never) => match never {},
}
let task = Task {
spawn,
map,
wake_handle: wake_handle.clone(),
exec: exec
};
match wake_handle.mutex.wait(task) {
Ok(()) => return, // we've waited
Err(r) => { // someone's notified us
spawn = r.spawn;
map = r.map;
exec = r.exec;
}
}
}
}
}
}
impl fmt::Debug for Task {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Task")
.field("contents", &"...")
.finish()
}
}
impl Wake for WakeHandle {
fn wake(arc_self: &Arc<Self>) {
match arc_self.mutex.notify() {
Ok(task) => arc_self.exec.state.send(Message::Run(task)),
Err(()) => {}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::sync::mpsc;
#[test]
fn test_drop_after_start() {
let (tx, rx) = mpsc::sync_channel(2);
let _cpu_pool = ThreadPoolBuilder::new()
.pool_size(2)
.after_start(move |_| tx.send(1).unwrap()).create().unwrap();
// After ThreadPoolBuilder is deconstructed, the tx should be droped
// so that we can use rx as an iterator.
let count = rx.into_iter().count();
assert_eq!(count, 2);
}
}