1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
//! An asynchronously awaitable mutex for synchronization between concurrently //! executing futures. use crate::{ intrusive_double_linked_list::{LinkedList, ListNode}, utils::update_waker_ref, NoopLock, }; use core::{ cell::UnsafeCell, ops::{Deref, DerefMut}, pin::Pin, }; use futures_core::{ future::{FusedFuture, Future}, task::{Context, Poll, Waker}, }; use lock_api::{Mutex as LockApiMutex, RawMutex}; /// Tracks how the future had interacted with the mutex #[derive(PartialEq)] enum PollState { /// The task has never interacted with the mutex. New, /// The task was added to the wait queue at the mutex. Waiting, /// The task had previously waited on the mutex, but was notified /// that the mutex was released in the meantime. Notified, /// The task had been polled to completion. Done, } /// Tracks the MutexLockFuture waiting state. /// Access to this struct is synchronized through the mutex in the Event. struct WaitQueueEntry { /// The task handle of the waiting task task: Option<Waker>, /// Current polling state state: PollState, } impl WaitQueueEntry { /// Creates a new WaitQueueEntry fn new() -> WaitQueueEntry { WaitQueueEntry { task: None, state: PollState::New, } } } /// Internal state of the `Mutex` struct MutexState { is_fair: bool, is_locked: bool, waiters: LinkedList<WaitQueueEntry>, } impl MutexState { fn new(is_fair: bool) -> Self { MutexState { is_fair, is_locked: false, waiters: LinkedList::new(), } } /// Returns the `Waker` associated with the up the last waiter /// /// If the Mutex is not fair, removes the associated wait node also from /// the wait queue fn return_last_waiter(&mut self) -> Option<Waker> { let last_waiter = if self.is_fair { self.waiters.peek_last() } else { self.waiters.remove_last() }; if let Some(last_waiter) = last_waiter { // Notify the waiter that it can try to lock the mutex again. // The notification gets tracked inside the waiter. // If the waiter aborts it's wait (drops the future), another task // must be woken. last_waiter.state = PollState::Notified; let task = &mut last_waiter.task; return task.take(); } None } fn is_locked(&self) -> bool { self.is_locked } /// Unlocks the mutex /// /// This is expected to be only called from the current holder of the mutex. /// The method returns the `Waker` which is associated with the task that /// needs to get woken due to the unlock. fn unlock(&mut self) -> Option<Waker> { if self.is_locked { self.is_locked = false; // TODO: Does this require a memory barrier for the actual data, // or is this covered by unlocking the mutex which protects the data? // Wakeup the last waiter self.return_last_waiter() } else { None } } /// Tries to lock the mutex synchronously. /// /// Returns true if the lock obtained and false otherwise. fn try_lock_sync(&mut self) -> bool { // The lock can only be obtained synchronously if // - it is not locked // - the Semaphore is either not fair, or there are no waiters // - required_permits == 0 if !self.is_locked && (!self.is_fair || self.waiters.is_empty()) { self.is_locked = true; true } else { false } } /// Tries to acquire the Mutex from a WaitQueueEntry. /// /// If it isn't available, the WaitQueueEntry gets added to the wait /// queue at the Mutex, and will be signalled once ready. /// This function is only safe as long as the `wait_node`s address is guaranteed /// to be stable until it gets removed from the queue. unsafe fn try_lock( &mut self, wait_node: &mut ListNode<WaitQueueEntry>, cx: &mut Context<'_>, ) -> Poll<()> { match wait_node.state { PollState::New => { // The fast path - the Mutex isn't locked by anyone else. // If the mutex is fair, noone must be in the wait list before us. if self.try_lock_sync() { wait_node.state = PollState::Done; Poll::Ready(()) } else { // Add the task to the wait queue wait_node.task = Some(cx.waker().clone()); wait_node.state = PollState::Waiting; self.waiters.add_front(wait_node); Poll::Pending } } PollState::Waiting => { // The MutexLockFuture is already in the queue. if self.is_fair { // The task needs to wait until it gets notified in order to // maintain the ordering. However the caller might have // passed a different `Waker`. In this case we need to update it. update_waker_ref(&mut wait_node.task, cx); Poll::Pending } else { // For throughput improvement purposes, grab the lock immediately // if it's available. if !self.is_locked { self.is_locked = true; wait_node.state = PollState::Done; // Since this waiter has been registered before, it must // get removed from the waiter list. // Safety: Due to the state, we know that the node must be part // of the waiter list self.force_remove_waiter(wait_node); Poll::Ready(()) } else { // The caller might have passed a different `Waker`. // In this case we need to update it. update_waker_ref(&mut wait_node.task, cx); Poll::Pending } } } PollState::Notified => { // We had been woken by the mutex, since the mutex is available again. // The mutex thereby removed us from the waiters list. // Just try to lock again. If the mutex isn't available, // we need to add it to the wait queue again. if !self.is_locked { if self.is_fair { // In a fair Mutex, the WaitQueueEntry is kept in the // linked list and must be removed here // Safety: Due to the state, we know that the node must be part // of the waiter list self.force_remove_waiter(wait_node); } self.is_locked = true; wait_node.state = PollState::Done; Poll::Ready(()) } else { // Fair mutexes should always be able to acquire the lock // after they had been notified debug_assert!(!self.is_fair); // Add to queue wait_node.task = Some(cx.waker().clone()); wait_node.state = PollState::Waiting; self.waiters.add_front(wait_node); Poll::Pending } } PollState::Done => { // The future had been polled to completion before panic!("polled Mutex after completion"); } } } /// Tries to remove a waiter from the wait queue, and panics if the /// waiter is no longer valid. unsafe fn force_remove_waiter( &mut self, wait_node: &mut ListNode<WaitQueueEntry>, ) { if !self.waiters.remove(wait_node) { // Panic if the address isn't found. This can only happen if the contract was // violated, e.g. the WaitQueueEntry got moved after the initial poll. panic!("Future could not be removed from wait queue"); } } /// Removes the waiter from the list. /// /// This function is only safe as long as the reference that is passed here /// equals the reference/address under which the waiter was added. /// The waiter must not have been moved in between. /// /// Returns the `Waker` of another task which might get ready to run due to /// this. fn remove_waiter( &mut self, wait_node: &mut ListNode<WaitQueueEntry>, ) -> Option<Waker> { // MutexLockFuture only needs to get removed if it had been added to // the wait queue of the Mutex. This has happened in the PollState::Waiting case. // If the current waiter was notified, another waiter must get notified now. match wait_node.state { PollState::Notified => { if self.is_fair { // In a fair Mutex, the WaitQueueEntry is kept in the // linked list and must be removed here // Safety: Due to the state, we know that the node must be part // of the waiter list unsafe { self.force_remove_waiter(wait_node) }; } wait_node.state = PollState::Done; // Since the task was notified but did not lock the Mutex, // another task gets the chance to run. self.return_last_waiter() } PollState::Waiting => { // Remove the WaitQueueEntry from the linked list // Safety: Due to the state, we know that the node must be part // of the waiter list unsafe { self.force_remove_waiter(wait_node) }; wait_node.state = PollState::Done; None } PollState::New | PollState::Done => None, } } } /// An RAII guard returned by the `lock` and `try_lock` methods. /// When this structure is dropped (falls out of scope), the lock will be /// unlocked. pub struct GenericMutexGuard<'a, MutexType: RawMutex, T: 'a> { /// The Mutex which is associated with this Guard mutex: &'a GenericMutex<MutexType, T>, } impl<MutexType: RawMutex, T: core::fmt::Debug> core::fmt::Debug for GenericMutexGuard<'_, MutexType, T> { fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { f.debug_struct("GenericMutexGuard").finish() } } impl<MutexType: RawMutex, T> Drop for GenericMutexGuard<'_, MutexType, T> { fn drop(&mut self) { // Release the mutex let waker = { self.mutex.state.lock().unlock() }; if let Some(waker) = waker { waker.wake(); } } } impl<MutexType: RawMutex, T> Deref for GenericMutexGuard<'_, MutexType, T> { type Target = T; fn deref(&self) -> &T { unsafe { &*self.mutex.value.get() } } } impl<MutexType: RawMutex, T> DerefMut for GenericMutexGuard<'_, MutexType, T> { fn deref_mut(&mut self) -> &mut T { unsafe { &mut *self.mutex.value.get() } } } /// A future which resolves when the target mutex has been successfully acquired. #[must_use = "futures do nothing unless polled"] pub struct GenericMutexLockFuture<'a, MutexType: RawMutex, T: 'a> { /// The Mutex which should get locked trough this Future mutex: Option<&'a GenericMutex<MutexType, T>>, /// Node for waiting at the mutex wait_node: ListNode<WaitQueueEntry>, } // Safety: Futures can be sent between threads as long as the underlying // mutex is thread-safe (Sync), which allows to poll/register/unregister from // a different thread. unsafe impl<'a, MutexType: RawMutex + Sync, T: 'a> Send for GenericMutexLockFuture<'a, MutexType, T> { } impl<'a, MutexType: RawMutex, T: core::fmt::Debug> core::fmt::Debug for GenericMutexLockFuture<'a, MutexType, T> { fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { f.debug_struct("GenericMutexLockFuture").finish() } } impl<'a, MutexType: RawMutex, T> Future for GenericMutexLockFuture<'a, MutexType, T> { type Output = GenericMutexGuard<'a, MutexType, T>; fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { // Safety: The next operations are safe, because Pin promises us that // the address of the wait queue entry inside GenericMutexLockFuture is stable, // and we don't move any fields inside the future until it gets dropped. let mut_self: &mut GenericMutexLockFuture<MutexType, T> = unsafe { Pin::get_unchecked_mut(self) }; let mutex = mut_self .mutex .expect("polled GenericMutexLockFuture after completion"); let mut mutex_state = mutex.state.lock(); let poll_res = unsafe { mutex_state.try_lock(&mut mut_self.wait_node, cx) }; match poll_res { Poll::Pending => Poll::Pending, Poll::Ready(()) => { // The mutex was acquired mut_self.mutex = None; Poll::Ready(GenericMutexGuard::<'a, MutexType, T> { mutex }) } } } } impl<'a, MutexType: RawMutex, T> FusedFuture for GenericMutexLockFuture<'a, MutexType, T> { fn is_terminated(&self) -> bool { self.mutex.is_none() } } impl<'a, MutexType: RawMutex, T> Drop for GenericMutexLockFuture<'a, MutexType, T> { fn drop(&mut self) { // If this GenericMutexLockFuture has been polled and it was added to the // wait queue at the mutex, it must be removed before dropping. // Otherwise the mutex would access invalid memory. let waker = if let Some(mutex) = self.mutex { let mut mutex_state = mutex.state.lock(); mutex_state.remove_waiter(&mut self.wait_node) } else { None }; if let Some(waker) = waker { waker.wake(); } } } /// A futures-aware mutex. pub struct GenericMutex<MutexType: RawMutex, T> { value: UnsafeCell<T>, state: LockApiMutex<MutexType, MutexState>, } // It is safe to send mutexes between threads, as long as they are not used and // thereby borrowed unsafe impl<T: Send, MutexType: RawMutex + Send> Send for GenericMutex<MutexType, T> { } // The mutex is thread-safe as long as the utilized mutex is thread-safe unsafe impl<T: Send, MutexType: RawMutex + Sync> Sync for GenericMutex<MutexType, T> { } impl<MutexType: RawMutex, T: core::fmt::Debug> core::fmt::Debug for GenericMutex<MutexType, T> { fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { f.debug_struct("Mutex") .field("is_locked", &self.is_locked()) .finish() } } impl<MutexType: RawMutex, T> GenericMutex<MutexType, T> { /// Creates a new futures-aware mutex. /// /// `is_fair` defines whether the `Mutex` should behave be fair regarding the /// order of waiters. A fair `Mutex` will only allow the first waiter which /// tried to lock but failed to lock the `Mutex` once it's available again. /// Other waiters must wait until either this locking attempt completes, and /// the `Mutex` gets unlocked again, or until the `MutexLockFuture` which /// tried to gain the lock is dropped. pub fn new(value: T, is_fair: bool) -> GenericMutex<MutexType, T> { GenericMutex::<MutexType, T> { value: UnsafeCell::new(value), state: LockApiMutex::new(MutexState::new(is_fair)), } } /// Acquire the mutex asynchronously. /// /// This method returns a future that will resolve once the mutex has been /// successfully acquired. pub fn lock(&self) -> GenericMutexLockFuture<'_, MutexType, T> { GenericMutexLockFuture::<MutexType, T> { mutex: Some(&self), wait_node: ListNode::new(WaitQueueEntry::new()), } } /// Tries to acquire the mutex /// /// If acquiring the mutex is successful, a [`GenericMutexGuard`] /// will be returned, which allows to access the contained data. /// /// Otherwise `None` will be returned. pub fn try_lock(&self) -> Option<GenericMutexGuard<'_, MutexType, T>> { if self.state.lock().try_lock_sync() { Some(GenericMutexGuard { mutex: self }) } else { None } } /// Returns whether the mutex is locked. pub fn is_locked(&self) -> bool { self.state.lock().is_locked() } } // Export a non thread-safe version using NoopLock /// A [`GenericMutex`] which is not thread-safe. pub type LocalMutex<T> = GenericMutex<NoopLock, T>; /// A [`GenericMutexGuard`] for [`LocalMutex`]. pub type LocalMutexGuard<'a, T> = GenericMutexGuard<'a, NoopLock, T>; /// A [`GenericMutexLockFuture`] for [`LocalMutex`]. pub type LocalMutexLockFuture<'a, T> = GenericMutexLockFuture<'a, NoopLock, T>; #[cfg(feature = "alloc")] mod if_alloc { use super::*; // Export a thread-safe version using parking_lot::RawMutex /// A [`GenericMutex`] backed by [`parking_lot`]. pub type Mutex<T> = GenericMutex<parking_lot::RawMutex, T>; /// A [`GenericMutexGuard`] for [`Mutex`]. pub type MutexGuard<'a, T> = GenericMutexGuard<'a, parking_lot::RawMutex, T>; /// A [`GenericMutexLockFuture`] for [`Mutex`]. pub type MutexLockFuture<'a, T> = GenericMutexLockFuture<'a, parking_lot::RawMutex, T>; } #[cfg(feature = "alloc")] pub use self::if_alloc::*;