1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
//! An asynchronously awaitable oneshot channel which can be awaited by
//! multiple consumers.
use super::{
ChannelReceiveAccess, ChannelReceiveFuture, ChannelSendError, CloseStatus,
RecvPollState, RecvWaitQueueEntry,
};
use crate::{
intrusive_double_linked_list::{LinkedList, ListNode},
utils::update_waker_ref,
NoopLock,
};
use core::marker::PhantomData;
use futures_core::task::{Context, Poll};
use lock_api::{Mutex, RawMutex};
fn wake_waiters(waiters: &mut LinkedList<RecvWaitQueueEntry>) {
// Remove all waiters from the waiting list in reverse order and wake them.
// We reverse the waiter list, so that the oldest waker (which is
// at the end of the list), gets woken first and has the best
// chance to grab the channel value.
waiters.reverse_drain(|waiter| {
if let Some(handle) = waiter.task.take() {
handle.wake();
}
waiter.state = RecvPollState::Unregistered;
});
}
/// Internal state of the oneshot channel
struct ChannelState<T> {
/// Whether the channel had been fulfilled before
is_fulfilled: bool,
/// The value which is stored inside the channel
value: Option<T>,
/// The list of waiters, which are waiting for the channel to get fulfilled
waiters: LinkedList<RecvWaitQueueEntry>,
}
impl<T> ChannelState<T>
where
T: Clone,
{
fn new() -> ChannelState<T> {
ChannelState::<T> {
is_fulfilled: false,
value: None,
waiters: LinkedList::new(),
}
}
/// Writes a single value to the channel.
/// If a value had been written to the channel before, the new value will be rejected.
fn send(&mut self, value: T) -> Result<(), ChannelSendError<T>> {
if self.is_fulfilled {
return Err(ChannelSendError(value));
}
self.value = Some(value);
self.is_fulfilled = true;
// Wakeup all waiters
wake_waiters(&mut self.waiters);
Ok(())
}
fn close(&mut self) -> CloseStatus {
if self.is_fulfilled {
return CloseStatus::AlreadyClosed;
}
self.is_fulfilled = true;
// Wakeup all waiters
wake_waiters(&mut self.waiters);
CloseStatus::NewlyClosed
}
/// Tries to read the value from the channel.
/// If the value isn't available yet, the ChannelReceiveFuture gets added to the
/// wait queue at the channel, and will be signalled once ready.
/// This function is only safe as long as the `wait_node`s address is guaranteed
/// to be stable until it gets removed from the queue.
unsafe fn try_receive(
&mut self,
wait_node: &mut ListNode<RecvWaitQueueEntry>,
cx: &mut Context<'_>,
) -> Poll<Option<T>> {
match wait_node.state {
RecvPollState::Unregistered => {
match &self.value {
Some(v) => {
// A value was available inside the channel and was fetched.
// TODO: If the same waiter asks again, they will always
// get the same value, instead of `None`. Is that reasonable?
Poll::Ready(Some(v.clone()))
}
None => {
// Check if something was written into the channel before
// or the channel was closed.
if self.is_fulfilled {
Poll::Ready(None)
} else {
// Added the task to the wait queue
wait_node.task = Some(cx.waker().clone());
wait_node.state = RecvPollState::Registered;
self.waiters.add_front(wait_node);
Poll::Pending
}
}
}
}
RecvPollState::Registered => {
// Since the channel wakes up all waiters and moves their states
// to unregistered there can't be any value in the channel in this state.
// However the caller might have passed a different `Waker`.
// In this case we need to update it.
update_waker_ref(&mut wait_node.task, cx);
Poll::Pending
}
RecvPollState::Notified => {
unreachable!("Not possible for Oneshot Broadcast");
}
}
}
fn remove_waiter(&mut self, wait_node: &mut ListNode<RecvWaitQueueEntry>) {
// ChannelReceiveFuture only needs to get removed if it had been added to
// the wait queue of the channel. This has happened in the RecvPollState::Waiting case.
if let RecvPollState::Registered = wait_node.state {
// Safety: Due to the state, we know that the node must be part
// of the waiter list
if !unsafe { self.waiters.remove(wait_node) } {
// Panic if the address isn't found. This can only happen if the contract was
// violated, e.g. the RecvWaitQueueEntry got moved after the initial poll.
panic!("Future could not be removed from wait queue");
}
wait_node.state = RecvPollState::Unregistered;
}
}
}
/// A channel which can be used to exchange a single value between two or more
/// concurrent tasks.
///
/// The value which gets sent will get stored inside the Channel, and can be
/// retrieved by an arbitrary number of tasks afterwards.
///
/// Tasks can wait for the value to get delivered via `receive`.
/// The returned Future will get fulfilled when a value is sent into the channel.
pub struct GenericOneshotBroadcastChannel<MutexType: RawMutex, T> {
inner: Mutex<MutexType, ChannelState<T>>,
}
// The channel can be sent to other threads as long as it's not borrowed and the
// value in it can be sent to other threads.
unsafe impl<MutexType: RawMutex + Send, T: Send> Send
for GenericOneshotBroadcastChannel<MutexType, T>
{
}
// The channel is thread-safe as long as a thread-safe mutex is used
unsafe impl<MutexType: RawMutex + Sync, T: Send> Sync
for GenericOneshotBroadcastChannel<MutexType, T>
{
}
impl<MutexType: RawMutex, T> core::fmt::Debug
for GenericOneshotBroadcastChannel<MutexType, T>
{
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct("GenericOneshotBroadcastChannel").finish()
}
}
impl<MutexType: RawMutex, T> GenericOneshotBroadcastChannel<MutexType, T>
where
T: Clone,
{
/// Creates a new OneshotBroadcastChannel in the given state
pub fn new() -> GenericOneshotBroadcastChannel<MutexType, T> {
GenericOneshotBroadcastChannel {
inner: Mutex::new(ChannelState::new()),
}
}
/// Writes a single value to the channel.
///
/// This will notify waiters about the availability of the value.
/// If a value had been written to the channel before, or if the
/// channel is closed, the new value will be rejected and
/// returned inside the error variant.
pub fn send(&self, value: T) -> Result<(), ChannelSendError<T>> {
self.inner.lock().send(value)
}
/// Closes the channel.
///
/// This will notify waiters about closure, by fulfilling pending `Future`s
/// with `None`.
/// `send(value)` attempts which follow this call will fail with a
/// [`ChannelSendError`].
pub fn close(&self) -> CloseStatus {
self.inner.lock().close()
}
/// Returns a future that gets fulfilled when a value is written to the channel
/// or the channel is closed.
pub fn receive(&self) -> ChannelReceiveFuture<MutexType, T> {
ChannelReceiveFuture {
channel: Some(self),
wait_node: ListNode::new(RecvWaitQueueEntry::new()),
_phantom: PhantomData,
}
}
}
impl<MutexType: RawMutex, T> ChannelReceiveAccess<T>
for GenericOneshotBroadcastChannel<MutexType, T>
where
T: Clone,
{
unsafe fn receive_or_register(
&self,
wait_node: &mut ListNode<RecvWaitQueueEntry>,
cx: &mut Context<'_>,
) -> Poll<Option<T>> {
self.inner.lock().try_receive(wait_node, cx)
}
fn remove_receive_waiter(
&self,
wait_node: &mut ListNode<RecvWaitQueueEntry>,
) {
self.inner.lock().remove_waiter(wait_node)
}
}
// Export a non thread-safe version using NoopLock
/// A [`GenericOneshotBroadcastChannel`] which is not thread-safe.
pub type LocalOneshotBroadcastChannel<T> =
GenericOneshotBroadcastChannel<NoopLock, T>;
#[cfg(feature = "std")]
mod if_std {
use super::*;
// Export a thread-safe version using parking_lot::RawMutex
/// A [`GenericOneshotBroadcastChannel`] implementation backed by [`parking_lot`].
pub type OneshotBroadcastChannel<T> =
GenericOneshotBroadcastChannel<parking_lot::RawMutex, T>;
}
#[cfg(feature = "std")]
pub use self::if_std::*;
#[cfg(feature = "alloc")]
mod if_alloc {
use super::*;
pub mod shared {
use super::*;
use crate::channel::shared::ChannelReceiveFuture;
struct GenericOneshotChannelSharedState<MutexType, T>
where
MutexType: RawMutex,
T: 'static,
{
channel: GenericOneshotBroadcastChannel<MutexType, T>,
}
// Implement ChannelReceiveAccess trait for SharedChannelState, so that it can
// be used for dynamic dispatch in futures.
impl<MutexType, T> ChannelReceiveAccess<T>
for GenericOneshotChannelSharedState<MutexType, T>
where
MutexType: RawMutex,
T: Clone,
{
unsafe fn receive_or_register(
&self,
wait_node: &mut ListNode<RecvWaitQueueEntry>,
cx: &mut Context<'_>,
) -> Poll<Option<T>> {
self.channel.receive_or_register(wait_node, cx)
}
fn remove_receive_waiter(
&self,
wait_node: &mut ListNode<RecvWaitQueueEntry>,
) {
self.channel.remove_receive_waiter(wait_node)
}
}
/// The sending side of a channel which can be used to exchange values
/// between concurrent tasks.
///
/// Values can be sent into the channel through `send`.
pub struct GenericOneshotBroadcastSender<MutexType, T>
where
MutexType: RawMutex,
T: Clone + 'static,
{
inner: alloc::sync::Arc<
GenericOneshotChannelSharedState<MutexType, T>,
>,
}
/// The receiving side of a channel which can be used to exchange values
/// between concurrent tasks.
///
/// Tasks can receive values from the channel through the `receive` method.
/// The returned Future will get resolved when a value is sent into the channel.
pub struct GenericOneshotBroadcastReceiver<MutexType, T>
where
MutexType: RawMutex,
T: Clone + 'static,
{
inner: alloc::sync::Arc<
GenericOneshotChannelSharedState<MutexType, T>,
>,
}
// Manual `Clone` implementation, since #[derive(Clone)] also requires
// the Mutex to be `Clone`
impl<MutexType, T> Clone for GenericOneshotBroadcastReceiver<MutexType, T>
where
MutexType: RawMutex,
T: Clone + 'static,
{
fn clone(&self) -> Self {
Self {
inner: self.inner.clone(),
}
}
}
impl<MutexType, T> core::fmt::Debug
for GenericOneshotBroadcastSender<MutexType, T>
where
MutexType: RawMutex,
T: Clone,
{
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct("OneshotBroadcastSender").finish()
}
}
impl<MutexType, T> core::fmt::Debug
for GenericOneshotBroadcastReceiver<MutexType, T>
where
MutexType: RawMutex,
T: Clone,
{
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct("OneshotBroadcastReceiver").finish()
}
}
impl<MutexType, T> Drop for GenericOneshotBroadcastSender<MutexType, T>
where
MutexType: RawMutex,
T: Clone,
{
fn drop(&mut self) {
// Close the channel, before last sender gets destroyed
// TODO: We could potentially avoid this, if no receiver is left
self.inner.channel.close();
}
}
impl<MutexType, T> Drop for GenericOneshotBroadcastReceiver<MutexType, T>
where
MutexType: RawMutex,
T: Clone,
{
fn drop(&mut self) {
// TODO: This is broken, since it will already close the channel if only one receiver is closed.
// We need to count receivers, as in mpmc queue.
// Close the channel, before last receiver gets destroyed
// TODO: We could potentially avoid this, if no sender is left
self.inner.channel.close();
}
}
/// Creates a new oneshot broadcast channel which can be used to exchange values
/// of type `T` between concurrent tasks.
/// The ends of the Channel are represented through
/// the returned `Sender` and `Receiver`. The `Receiver` can be cloned.
///
/// As soon es either the senders or all receivers is closed, the channel
/// itself will be closed.
pub fn generic_oneshot_broadcast_channel<MutexType, T>() -> (
GenericOneshotBroadcastSender<MutexType, T>,
GenericOneshotBroadcastReceiver<MutexType, T>,
)
where
MutexType: RawMutex,
T: Send + Clone,
{
let inner =
alloc::sync::Arc::new(GenericOneshotChannelSharedState {
channel: GenericOneshotBroadcastChannel::new(),
});
let sender = GenericOneshotBroadcastSender {
inner: inner.clone(),
};
let receiver = GenericOneshotBroadcastReceiver { inner };
(sender, receiver)
}
impl<MutexType, T> GenericOneshotBroadcastSender<MutexType, T>
where
MutexType: RawMutex + 'static,
T: Clone,
{
/// Writes a single value to the channel.
///
/// This will notify waiters about the availability of the value.
/// If a value had been written to the channel before, or if the
/// channel is closed, the new value will be rejected and
/// returned inside the error variant.
pub fn send(&self, value: T) -> Result<(), ChannelSendError<T>> {
self.inner.channel.send(value)
}
}
impl<MutexType, T> GenericOneshotBroadcastReceiver<MutexType, T>
where
MutexType: RawMutex + 'static,
T: Clone,
{
/// Returns a future that gets fulfilled when a value is written to the channel.
/// If the channels gets closed, the future will resolve to `None`.
pub fn receive(&self) -> ChannelReceiveFuture<MutexType, T> {
ChannelReceiveFuture {
channel: Some(self.inner.clone()),
wait_node: ListNode::new(RecvWaitQueueEntry::new()),
_phantom: PhantomData,
}
}
}
// Export parking_lot based shared channels in std mode
#[cfg(feature = "std")]
mod if_std {
use super::*;
/// A [`GenericOneshotBroadcastSender`] implementation backed by [`parking_lot`].
pub type OneshotBroadcastSender<T> =
GenericOneshotBroadcastSender<parking_lot::RawMutex, T>;
/// A [`GenericOneshotBroadcastReceiver`] implementation backed by [`parking_lot`].
pub type OneshotBroadcastReceiver<T> =
GenericOneshotBroadcastReceiver<parking_lot::RawMutex, T>;
/// Creates a new oneshot broadcast channel.
///
/// Refer to [`generic_oneshot_broadcast_channel`] for details.
///
/// Example for creating a channel to transmit an integer value:
///
/// ```
/// # use futures_intrusive::channel::shared::oneshot_broadcast_channel;
/// let (sender, receiver) = oneshot_broadcast_channel::<i32>();
/// ```
pub fn oneshot_broadcast_channel<T>(
) -> (OneshotBroadcastSender<T>, OneshotBroadcastReceiver<T>)
where
T: Send + Clone,
{
generic_oneshot_broadcast_channel::<parking_lot::RawMutex, T>()
}
}
#[cfg(feature = "std")]
pub use self::if_std::*;
}
}
#[cfg(feature = "alloc")]
pub use self::if_alloc::*;