1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
//! An asynchronously awaitable semaphore for synchronization between concurrently
//! executing futures.

use crate::{
    intrusive_double_linked_list::{LinkedList, ListNode},
    utils::update_waker_ref,
    NoopLock,
};
use core::pin::Pin;
use futures_core::{
    future::{FusedFuture, Future},
    task::{Context, Poll, Waker},
};
use lock_api::{Mutex as LockApiMutex, RawMutex};

/// Tracks how the future had interacted with the semaphore
#[derive(PartialEq)]
enum PollState {
    /// The task has never interacted with the semaphore.
    New,
    /// The task was added to the wait queue at the semaphore.
    Waiting,
    /// The task had previously waited on the semaphore, but was notified
    /// that the semaphore was released in the meantime and that the task
    /// thereby could retry.
    Notified,
    /// The task had been polled to completion.
    Done,
}

/// Tracks the SemaphoreAcquireFuture waiting state.
struct WaitQueueEntry {
    /// The task handle of the waiting task
    task: Option<Waker>,
    /// Current polling state
    state: PollState,
    /// The amount of permits that should be obtained
    required_permits: usize,
}

impl WaitQueueEntry {
    /// Creates a new WaitQueueEntry
    fn new(required_permits: usize) -> WaitQueueEntry {
        WaitQueueEntry {
            task: None,
            state: PollState::New,
            required_permits,
        }
    }
}

/// Internal state of the `Semaphore`
struct SemaphoreState {
    is_fair: bool,
    permits: usize,
    waiters: LinkedList<WaitQueueEntry>,
}

impl SemaphoreState {
    fn new(is_fair: bool, permits: usize) -> Self {
        SemaphoreState {
            is_fair,
            permits,
            waiters: LinkedList::new(),
        }
    }

    /// Wakes up the last waiter and removes it from the wait queue
    fn wakeup_waiters(&mut self) {
        // Wake as many tasks as the permits allow
        let mut available = self.permits;

        loop {
            match self.waiters.peek_last_mut() {
                None => return,
                Some(last_waiter) => {
                    // Check if enough permits are available for this waiter.
                    // If not then a wakeup attempt won't be successful.
                    if available < last_waiter.required_permits {
                        return;
                    }
                    available -= last_waiter.required_permits;

                    // Notify the waiter that it can try to acquire the semaphore again.
                    // The notification gets tracked inside the waiter.
                    // If the waiter aborts it's wait (drops the future), another task
                    // must be woken.
                    if last_waiter.state != PollState::Notified {
                        last_waiter.state = PollState::Notified;

                        let task = &last_waiter.task;
                        if let Some(ref handle) = task {
                            handle.wake_by_ref();
                        }
                    }

                    // In the case of a non-fair semaphore, the waiters are directly
                    // removed from the semaphores wait queue when woken.
                    // That avoids having to remove the wait element later.
                    if !self.is_fair {
                        self.waiters.remove_last();
                    } else {
                        // For a fair Semaphore we never wake more than 1 task.
                        // That one needs to acquire the Semaphore.
                        // TODO: We actually should be able to wake more, since
                        // it's guaranteed that both tasks could make progress.
                        // However the we currently can't peek iterate in reverse order.
                        return;
                    }
                }
            }
        }
    }

    fn permits(&self) -> usize {
        self.permits
    }

    /// Releases a certain amount of permits back to the semaphore
    fn release(&mut self, permits: usize) {
        if permits == 0 {
            return;
        }
        // TODO: Overflow check
        self.permits += permits;

        // Wakeup the last waiter
        self.wakeup_waiters();
    }

    /// Tries to acquire the given amount of permits synchronously.
    ///
    /// Returns true if the permits were obtained and false otherwise.
    fn try_acquire_sync(&mut self, required_permits: usize) -> bool {
        // Permits can only be obtained synchronously if there are
        // - enough permits available
        // - the Semaphore is either not fair, or there are no waiters
        // - required_permits == 0
        if (self.permits >= required_permits)
            && (!self.is_fair
                || self.waiters.is_empty()
                || required_permits == 0)
        {
            self.permits -= required_permits;
            true
        } else {
            false
        }
    }

    /// Tries to acquire the Semaphore from a WaitQueueEntry.
    /// If it isn't available, the WaitQueueEntry gets added to the wait
    /// queue at the Semaphore, and will be signalled once ready.
    /// This function is only safe as long as the `wait_node`s address is guaranteed
    /// to be stable until it gets removed from the queue.
    unsafe fn try_acquire(
        &mut self,
        wait_node: &mut ListNode<WaitQueueEntry>,
        cx: &mut Context<'_>,
    ) -> Poll<()> {
        match wait_node.state {
            PollState::New => {
                // The fast path - enough permits are available
                if self.try_acquire_sync(wait_node.required_permits) {
                    wait_node.state = PollState::Done;
                    Poll::Ready(())
                } else {
                    // Add the task to the wait queue
                    wait_node.task = Some(cx.waker().clone());
                    wait_node.state = PollState::Waiting;
                    self.waiters.add_front(wait_node);
                    Poll::Pending
                }
            }
            PollState::Waiting => {
                // The SemaphoreAcquireFuture is already in the queue.
                if self.is_fair {
                    // The task needs to wait until it gets notified in order to
                    // maintain the ordering.
                    // However the caller might have passed a different `Waker`.
                    // In this case we need to update it.
                    update_waker_ref(&mut wait_node.task, cx);
                    Poll::Pending
                } else {
                    // For throughput improvement purposes, check immediately
                    // if enough permits are available
                    if self.permits >= wait_node.required_permits {
                        self.permits -= wait_node.required_permits;
                        wait_node.state = PollState::Done;
                        // Since this waiter has been registered before, it must
                        // get removed from the waiter list.
                        // Safety: Due to the state, we know that the node must be part
                        // of the waiter list
                        self.force_remove_waiter(wait_node);
                        Poll::Ready(())
                    } else {
                        // The caller might have passed a different `Waker`.
                        // In this case we need to update it.
                        update_waker_ref(&mut wait_node.task, cx);
                        Poll::Pending
                    }
                }
            }
            PollState::Notified => {
                // We had been woken by the semaphore, since the semaphore is available again.
                // The semaphore thereby removed us from the waiters list.
                // Just try to lock again. If the semaphore isn't available,
                // we need to add it to the wait queue again.
                if self.permits >= wait_node.required_permits {
                    if self.is_fair {
                        // In a fair Semaphore, the WaitQueueEntry is kept in the
                        // linked list and must be removed here
                        // Safety: Due to the state, we know that the node must be part
                        // of the waiter list
                        self.force_remove_waiter(wait_node);
                    }
                    self.permits -= wait_node.required_permits;
                    if self.is_fair {
                        // There might be another task which is ready to run,
                        // but couldn't, since it was blocked behind the fair waiter.
                        self.wakeup_waiters();
                    }
                    wait_node.state = PollState::Done;
                    Poll::Ready(())
                } else {
                    // A fair semaphore should never end up in that branch, since
                    // it's only notified when it's permits are guaranteed to
                    // be available. assert! in order to find logic bugs
                    assert!(
                        !self.is_fair,
                        "Fair semaphores should always be ready when notified"
                    );
                    // Add to queue
                    wait_node.task = Some(cx.waker().clone());
                    wait_node.state = PollState::Waiting;
                    self.waiters.add_front(wait_node);
                    Poll::Pending
                }
            }
            PollState::Done => {
                // The future had been polled to completion before
                panic!("polled Mutex after completion");
            }
        }
    }

    /// Tries to remove a waiter from the wait queue, and panics if the
    /// waiter is no longer valid.
    unsafe fn force_remove_waiter(
        &mut self,
        wait_node: &mut ListNode<WaitQueueEntry>,
    ) {
        if !self.waiters.remove(wait_node) {
            // Panic if the address isn't found. This can only happen if the contract was
            // violated, e.g. the WaitQueueEntry got moved after the initial poll.
            panic!("Future could not be removed from wait queue");
        }
    }

    /// Removes the waiter from the list.
    /// This function is only safe as long as the reference that is passed here
    /// equals the reference/address under which the waiter was added.
    /// The waiter must not have been moved in between.
    fn remove_waiter(&mut self, wait_node: &mut ListNode<WaitQueueEntry>) {
        // SemaphoreAcquireFuture only needs to get removed if it had been added to
        // the wait queue of the Semaphore. This has happened in the PollState::Waiting case.
        // If the current waiter was notified, another waiter must get notified now.
        match wait_node.state {
            PollState::Notified => {
                if self.is_fair {
                    // In a fair Mutex, the WaitQueueEntry is kept in the
                    // linked list and must be removed here
                    // Safety: Due to the state, we know that the node must be part
                    // of the waiter list
                    unsafe { self.force_remove_waiter(wait_node) };
                }
                wait_node.state = PollState::Done;
                // Wakeup more waiters
                self.wakeup_waiters();
            }
            PollState::Waiting => {
                // Remove the WaitQueueEntry from the linked list
                // Safety: Due to the state, we know that the node must be part
                // of the waiter list
                unsafe { self.force_remove_waiter(wait_node) };
                wait_node.state = PollState::Done;
            }
            PollState::New | PollState::Done => {}
        }
    }
}

/// An RAII guard returned by the `acquire` and `try_acquire` methods.
///
/// When this structure is dropped (falls out of scope),
/// the amount of permits that was used in the `acquire()` call will be released
/// back to the Semaphore.
pub struct GenericSemaphoreReleaser<'a, MutexType: RawMutex> {
    /// The Semaphore which is associated with this Releaser
    semaphore: &'a GenericSemaphore<MutexType>,
    /// The amount of permits to release
    permits: usize,
}

impl<MutexType: RawMutex> core::fmt::Debug
    for GenericSemaphoreReleaser<'_, MutexType>
{
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        f.debug_struct("GenericSemaphoreReleaser").finish()
    }
}

impl<MutexType: RawMutex> GenericSemaphoreReleaser<'_, MutexType> {
    /// Prevents the SemaphoreReleaser from automatically releasing the permits
    /// when it gets dropped.
    /// This is helpful if the permits must be acquired for a longer lifetime
    /// than the one of the SemaphoreReleaser.
    /// If this method is used it is important to release the acquired permits
    /// manually back to the Semaphore.
    pub fn disarm(&mut self) -> usize {
        let permits = self.permits;
        self.permits = 0;
        permits
    }
}

impl<MutexType: RawMutex> Drop for GenericSemaphoreReleaser<'_, MutexType> {
    fn drop(&mut self) {
        // Release the requested amount of permits to the semaphore
        if self.permits != 0 {
            self.semaphore.state.lock().release(self.permits);
        }
    }
}

/// A future which resolves when the target semaphore has been successfully acquired.
#[must_use = "futures do nothing unless polled"]
pub struct GenericSemaphoreAcquireFuture<'a, MutexType: RawMutex> {
    /// The Semaphore which should get acquired trough this Future
    semaphore: Option<&'a GenericSemaphore<MutexType>>,
    /// Node for waiting at the semaphore
    wait_node: ListNode<WaitQueueEntry>,
    /// Whether the obtained permits should automatically be released back
    /// to the semaphore.
    auto_release: bool,
}

// Safety: Futures can be sent between threads as long as the underlying
// semaphore is thread-safe (Sync), which allows to poll/register/unregister from
// a different thread.
unsafe impl<'a, MutexType: RawMutex + Sync> Send
    for GenericSemaphoreAcquireFuture<'a, MutexType>
{
}

impl<'a, MutexType: RawMutex> core::fmt::Debug
    for GenericSemaphoreAcquireFuture<'a, MutexType>
{
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        f.debug_struct("GenericSemaphoreAcquireFuture").finish()
    }
}

impl<'a, MutexType: RawMutex> Future
    for GenericSemaphoreAcquireFuture<'a, MutexType>
{
    type Output = GenericSemaphoreReleaser<'a, MutexType>;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        // Safety: The next operations are safe, because Pin promises us that
        // the address of the wait queue entry inside GenericSemaphoreAcquireFuture is stable,
        // and we don't move any fields inside the future until it gets dropped.
        let mut_self: &mut GenericSemaphoreAcquireFuture<MutexType> =
            unsafe { Pin::get_unchecked_mut(self) };

        let semaphore = mut_self
            .semaphore
            .expect("polled GenericSemaphoreAcquireFuture after completion");
        let mut semaphore_state = semaphore.state.lock();

        let poll_res =
            unsafe { semaphore_state.try_acquire(&mut mut_self.wait_node, cx) };

        match poll_res {
            Poll::Pending => Poll::Pending,
            Poll::Ready(()) => {
                // The semaphore was acquired.
                mut_self.semaphore = None;
                let to_release = match mut_self.auto_release {
                    true => mut_self.wait_node.required_permits,
                    false => 0,
                };
                Poll::Ready(GenericSemaphoreReleaser::<'a, MutexType> {
                    semaphore,
                    permits: to_release,
                })
            }
        }
    }
}

impl<'a, MutexType: RawMutex> FusedFuture
    for GenericSemaphoreAcquireFuture<'a, MutexType>
{
    fn is_terminated(&self) -> bool {
        self.semaphore.is_none()
    }
}

impl<'a, MutexType: RawMutex> Drop
    for GenericSemaphoreAcquireFuture<'a, MutexType>
{
    fn drop(&mut self) {
        // If this GenericSemaphoreAcquireFuture has been polled and it was added to the
        // wait queue at the semaphore, it must be removed before dropping.
        // Otherwise the semaphore would access invalid memory.
        if let Some(semaphore) = self.semaphore {
            let mut semaphore_state = semaphore.state.lock();
            // Analysis: Does the number of permits play a role here?
            // The future was notified because there was a certain amount of permits
            // available.
            // Removing the waiter will wake up as many tasks as there are permits
            // available inside the Semaphore now. If this is bigger than the
            // amount of permits required for this task, then additional new
            // tasks might get woken. However that isn't bad, since
            // those tasks should get into the wait state anyway.
            semaphore_state.remove_waiter(&mut self.wait_node);
        }
    }
}

/// A futures-aware semaphore.
pub struct GenericSemaphore<MutexType: RawMutex> {
    state: LockApiMutex<MutexType, SemaphoreState>,
}

// It is safe to send semaphores between threads, as long as they are not used and
// thereby borrowed
unsafe impl<MutexType: RawMutex + Send> Send for GenericSemaphore<MutexType> {}
// The Semaphore is thread-safe as long as the utilized Mutex is thread-safe
unsafe impl<MutexType: RawMutex + Sync> Sync for GenericSemaphore<MutexType> {}

impl<MutexType: RawMutex> core::fmt::Debug for GenericSemaphore<MutexType> {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        f.debug_struct("Semaphore")
            .field("permits", &self.permits())
            .finish()
    }
}

impl<MutexType: RawMutex> GenericSemaphore<MutexType> {
    /// Creates a new futures-aware semaphore.
    ///
    /// `is_fair` defines whether the `Semaphore` should behave be fair regarding the
    /// order of waiters. A fair `Semaphore` will only allow the oldest waiter on
    /// a `Semaphore` to retry acquiring it once it's available again.
    /// Other waiters must wait until either this acquire attempt completes, and
    /// the `Semaphore` has enough permits after that, or until the
    /// [`SemaphoreAcquireFuture`] which tried to acquire the `Semaphore` is dropped.
    ///
    /// If the `Semaphore` isn't fair, waiters that wait for a high amount of
    /// permits might never succeed since the permits might be stolen in between
    /// by other waiters. Therefore use-cases which make use of very different
    /// amount of permits per acquire should use fair semaphores.
    /// For use-cases where each `acquire()` tries to acquire the same amount of
    /// permits an unfair `Semaphore` might provide throughput advantages.
    ///
    /// `permits` is the amount of permits that a semaphore should hold when
    /// created.
    pub fn new(is_fair: bool, permits: usize) -> GenericSemaphore<MutexType> {
        GenericSemaphore::<MutexType> {
            state: LockApiMutex::new(SemaphoreState::new(is_fair, permits)),
        }
    }

    /// Acquire a certain amount of permits on a semaphore asynchronously.
    ///
    /// This method returns a future that will resolve once the given amount of
    /// permits have been acquired.
    /// The Future will resolve to a [`GenericSemaphoreReleaser`], which will
    /// release all acquired permits automatically when dropped.
    pub fn acquire(
        &self,
        nr_permits: usize,
    ) -> GenericSemaphoreAcquireFuture<'_, MutexType> {
        GenericSemaphoreAcquireFuture::<MutexType> {
            semaphore: Some(&self),
            wait_node: ListNode::new(WaitQueueEntry::new(nr_permits)),
            auto_release: true,
        }
    }

    /// Tries to acquire a certain amount of permits on a semaphore.
    ///
    /// If acquiring the permits is successful, a [`GenericSemaphoreReleaser`]
    /// will be returned, which will release all acquired permits automatically
    /// when dropped.
    ///
    /// Otherwise `None` will be returned.
    pub fn try_acquire(
        &self,
        nr_permits: usize,
    ) -> Option<GenericSemaphoreReleaser<'_, MutexType>> {
        if self.state.lock().try_acquire_sync(nr_permits) {
            Some(GenericSemaphoreReleaser {
                semaphore: self,
                permits: nr_permits,
            })
        } else {
            None
        }
    }

    /// Releases the given amount of permits back to the semaphore.
    ///
    /// This method should in most cases not be used, since the
    /// [`GenericSemaphoreReleaser`] which is obtained when acquiring a Semaphore
    /// will automatically release the obtained permits again.
    ///
    /// Therefore this method should only be used if the automatic release was
    /// disabled by calling [`GenericSemaphoreReleaser::disarm`],
    /// or when the amount of permits in the Semaphore
    /// should increase from the initial amount.
    pub fn release(&self, nr_permits: usize) {
        self.state.lock().release(nr_permits)
    }

    /// Returns the amount of permits that are available on the semaphore
    pub fn permits(&self) -> usize {
        self.state.lock().permits()
    }
}

// Export a non thread-safe version using NoopLock

/// A [`GenericSemaphore`] which is not thread-safe.
pub type LocalSemaphore = GenericSemaphore<NoopLock>;
/// A [`GenericSemaphoreReleaser`] for [`LocalSemaphore`].
pub type LocalSemaphoreReleaser<'a> = GenericSemaphoreReleaser<'a, NoopLock>;
/// A [`GenericSemaphoreAcquireFuture`] for [`LocalSemaphore`].
pub type LocalSemaphoreAcquireFuture<'a> =
    GenericSemaphoreAcquireFuture<'a, NoopLock>;

#[cfg(feature = "std")]
mod if_std {
    use super::*;

    // Export a thread-safe version using parking_lot::RawMutex

    /// A [`GenericSemaphore`] backed by [`parking_lot`].
    pub type Semaphore = GenericSemaphore<parking_lot::RawMutex>;
    /// A [`GenericSemaphoreReleaser`] for [`Semaphore`].
    pub type SemaphoreReleaser<'a> =
        GenericSemaphoreReleaser<'a, parking_lot::RawMutex>;
    /// A [`GenericSemaphoreAcquireFuture`] for [`Semaphore`].
    pub type SemaphoreAcquireFuture<'a> =
        GenericSemaphoreAcquireFuture<'a, parking_lot::RawMutex>;
}

#[cfg(feature = "std")]
pub use self::if_std::*;

#[cfg(feature = "alloc")]
mod if_alloc {
    use super::*;

    use alloc::sync::Arc;

    /// An RAII guard returned by the `acquire` and `try_acquire` methods.
    ///
    /// When this structure is dropped (falls out of scope),
    /// the amount of permits that was used in the `acquire()` call will be released
    /// back to the Semaphore.
    pub struct GenericSharedSemaphoreReleaser<MutexType: RawMutex> {
        /// The Semaphore which is associated with this Releaser
        semaphore: GenericSharedSemaphore<MutexType>,
        /// The amount of permits to release
        permits: usize,
    }

    impl<MutexType: RawMutex> core::fmt::Debug
        for GenericSharedSemaphoreReleaser<MutexType>
    {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("GenericSharedSemaphoreReleaser").finish()
        }
    }

    impl<MutexType: RawMutex> GenericSharedSemaphoreReleaser<MutexType> {
        /// Prevents the SharedSemaphoreReleaser from automatically releasing the permits
        /// when it gets dropped.
        ///
        /// This is helpful if the permits must be acquired for a longer lifetime
        /// than the one of the SemaphoreReleaser.
        ///
        /// If this method is used it is important to release the acquired permits
        /// manually back to the Semaphore.
        pub fn disarm(&mut self) -> usize {
            let permits = self.permits;
            self.permits = 0;
            permits
        }
    }

    impl<MutexType: RawMutex> Drop for GenericSharedSemaphoreReleaser<MutexType> {
        fn drop(&mut self) {
            // Release the requested amount of permits to the semaphore
            if self.permits != 0 {
                self.semaphore.state.lock().release(self.permits);
            }
        }
    }

    /// A future which resolves when the target semaphore has been successfully acquired.
    #[must_use = "futures do nothing unless polled"]
    pub struct GenericSharedSemaphoreAcquireFuture<MutexType: RawMutex> {
        /// The Semaphore which should get acquired trough this Future
        semaphore: Option<GenericSharedSemaphore<MutexType>>,
        /// Node for waiting at the semaphore
        wait_node: ListNode<WaitQueueEntry>,
        /// Whether the obtained permits should automatically be released back
        /// to the semaphore.
        auto_release: bool,
    }

    // Safety: Futures can be sent between threads as long as the underlying
    // semaphore is thread-safe (Sync), which allows to poll/register/unregister from
    // a different thread.
    unsafe impl<MutexType: RawMutex + Sync> Send
        for GenericSharedSemaphoreAcquireFuture<MutexType>
    {
    }

    impl<MutexType: RawMutex> core::fmt::Debug
        for GenericSharedSemaphoreAcquireFuture<MutexType>
    {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("GenericSharedSemaphoreAcquireFuture")
                .finish()
        }
    }

    impl<MutexType: RawMutex> Future
        for GenericSharedSemaphoreAcquireFuture<MutexType>
    {
        type Output = GenericSharedSemaphoreReleaser<MutexType>;

        fn poll(
            self: Pin<&mut Self>,
            cx: &mut Context<'_>,
        ) -> Poll<Self::Output> {
            // Safety: The next operations are safe, because Pin promises us that
            // the address of the wait queue entry inside
            // GenericSharedSemaphoreAcquireFuture is stable,
            // and we don't move any fields inside the future until it gets dropped.
            let mut_self: &mut GenericSharedSemaphoreAcquireFuture<MutexType> =
                unsafe { Pin::get_unchecked_mut(self) };

            let semaphore = mut_self.semaphore.take().expect(
                "polled GenericSharedSemaphoreAcquireFuture after completion",
            );

            let poll_res = unsafe {
                let mut semaphore_state = semaphore.state.lock();
                semaphore_state.try_acquire(&mut mut_self.wait_node, cx)
            };

            match poll_res {
                Poll::Pending => {
                    mut_self.semaphore.replace(semaphore);
                    Poll::Pending
                }
                Poll::Ready(()) => {
                    let to_release = match mut_self.auto_release {
                        true => mut_self.wait_node.required_permits,
                        false => 0,
                    };
                    Poll::Ready(GenericSharedSemaphoreReleaser::<MutexType> {
                        semaphore,
                        permits: to_release,
                    })
                }
            }
        }
    }

    impl<MutexType: RawMutex> FusedFuture
        for GenericSharedSemaphoreAcquireFuture<MutexType>
    {
        fn is_terminated(&self) -> bool {
            self.semaphore.is_none()
        }
    }

    impl<MutexType: RawMutex> Drop
        for GenericSharedSemaphoreAcquireFuture<MutexType>
    {
        fn drop(&mut self) {
            // If this GenericSharedSemaphoreAcquireFuture has been polled and it was added to the
            // wait queue at the semaphore, it must be removed before dropping.
            // Otherwise the semaphore would access invalid memory.
            if let Some(semaphore) = self.semaphore.take() {
                let mut semaphore_state = semaphore.state.lock();
                // Analysis: Does the number of permits play a role here?
                // The future was notified because there was a certain amount of permits
                // available.
                // Removing the waiter will wake up as many tasks as there are permits
                // available inside the Semaphore now. If this is bigger than the
                // amount of permits required for this task, then additional new
                // tasks might get woken. However that isn't bad, since
                // those tasks should get into the wait state anyway.
                semaphore_state.remove_waiter(&mut self.wait_node);
            }
        }
    }

    /// A futures-aware shared semaphore.
    pub struct GenericSharedSemaphore<MutexType: RawMutex> {
        state: Arc<LockApiMutex<MutexType, SemaphoreState>>,
    }

    impl<MutexType: RawMutex> Clone for GenericSharedSemaphore<MutexType> {
        fn clone(&self) -> Self {
            Self {
                state: self.state.clone(),
            }
        }
    }

    // It is safe to send semaphores between threads, as long as they are not used and
    // thereby borrowed
    unsafe impl<MutexType: RawMutex + Send + Sync> Send
        for GenericSharedSemaphore<MutexType>
    {
    }
    // The Semaphore is thread-safe as long as the utilized Mutex is thread-safe
    unsafe impl<MutexType: RawMutex + Sync> Sync
        for GenericSharedSemaphore<MutexType>
    {
    }

    impl<MutexType: RawMutex> core::fmt::Debug
        for GenericSharedSemaphore<MutexType>
    {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Semaphore")
                .field("permits", &self.permits())
                .finish()
        }
    }

    impl<MutexType: RawMutex> GenericSharedSemaphore<MutexType> {
        /// Creates a new futures-aware shared semaphore.
        ///
        /// See `GenericSharedSemaphore` for more information.
        pub fn new(
            is_fair: bool,
            permits: usize,
        ) -> GenericSharedSemaphore<MutexType> {
            GenericSharedSemaphore::<MutexType> {
                state: Arc::new(LockApiMutex::new(SemaphoreState::new(
                    is_fair, permits,
                ))),
            }
        }

        /// Acquire a certain amount of permits on a semaphore asynchronously.
        ///
        /// This method returns a future that will resolve once the given amount of
        /// permits have been acquired.
        /// The Future will resolve to a [`GenericSharedSemaphoreReleaser`], which will
        /// release all acquired permits automatically when dropped.
        pub fn acquire(
            &self,
            nr_permits: usize,
        ) -> GenericSharedSemaphoreAcquireFuture<MutexType> {
            GenericSharedSemaphoreAcquireFuture::<MutexType> {
                semaphore: Some(self.clone()),
                wait_node: ListNode::new(WaitQueueEntry::new(nr_permits)),
                auto_release: true,
            }
        }

        /// Tries to acquire a certain amount of permits on a semaphore.
        ///
        /// If acquiring the permits is successful, a [`GenericSharedSemaphoreReleaser`]
        /// will be returned, which will release all acquired permits automatically
        /// when dropped.
        ///
        /// Otherwise `None` will be returned.
        pub fn try_acquire(
            &self,
            nr_permits: usize,
        ) -> Option<GenericSharedSemaphoreReleaser<MutexType>> {
            if self.state.lock().try_acquire_sync(nr_permits) {
                Some(GenericSharedSemaphoreReleaser {
                    semaphore: self.clone(),
                    permits: nr_permits,
                })
            } else {
                None
            }
        }

        /// Releases the given amount of permits back to the semaphore.
        ///
        /// This method should in most cases not be used, since the
        /// [`GenericSharedSemaphoreReleaser`] which is obtained when acquiring a Semaphore
        /// will automatically release the obtained permits again.
        ///
        /// Therefore this method should only be used if the automatic release was
        /// disabled by calling [`GenericSharedSemaphoreReleaser::disarm`],
        /// or when the amount of permits in the Semaphore
        /// should increase from the initial amount.
        pub fn release(&self, nr_permits: usize) {
            self.state.lock().release(nr_permits)
        }

        /// Returns the amount of permits that are available on the semaphore
        pub fn permits(&self) -> usize {
            self.state.lock().permits()
        }
    }

    // Export parking_lot based shared semaphores in std mode
    #[cfg(feature = "std")]
    mod if_std {
        use super::*;

        /// A [`GenericSharedSemaphore`] backed by [`parking_lot`].
        pub type SharedSemaphore =
            GenericSharedSemaphore<parking_lot::RawMutex>;
        /// A [`GenericSharedSemaphoreReleaser`] for [`SharedSemaphore`].
        pub type SharedSemaphoreReleaser =
            GenericSharedSemaphoreReleaser<parking_lot::RawMutex>;
        /// A [`GenericSharedSemaphoreAcquireFuture`] for [`SharedSemaphore`].
        pub type SharedSemaphoreAcquireFuture =
            GenericSharedSemaphoreAcquireFuture<parking_lot::RawMutex>;
    }

    #[cfg(feature = "std")]
    pub use self::if_std::*;
}

#[cfg(feature = "alloc")]
pub use self::if_alloc::*;