1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
//! An asynchronously awaitable multi producer multi consumer channel
use crate::intrusive_double_linked_list::{LinkedList, ListNode};
use crate::{
buffer::{ArrayBuf, RingBuf},
utils::update_waker_ref,
NoopLock,
};
use core::{marker::PhantomData, pin::Pin};
use futures_core::{
future::Future,
stream::{FusedStream, Stream},
task::{Context, Poll, Waker},
};
use lock_api::{Mutex, RawMutex};
use super::{
ChannelReceiveAccess, ChannelReceiveFuture, ChannelSendAccess,
ChannelSendFuture, CloseStatus, RecvPollState, RecvWaitQueueEntry,
SendPollState, SendWaitQueueEntry, TryReceiveError, TrySendError,
};
fn wake_recv_waiters(waiters: &mut LinkedList<RecvWaitQueueEntry>) {
// Remove all waiters from the waiting list in reverse order and wake them.
// We reverse the waiter list, so that the oldest waker (which is
// at the end of the list), gets woken first and has the best
// chance to grab the channel value.
waiters.reverse_drain(|waiter| {
if let Some(handle) = waiter.task.take() {
handle.wake();
}
// The only kind of waiter that could have been stored here are
// registered waiters (with a value), since others are removed
// whenever their value had been copied into the channel.
waiter.state = RecvPollState::Unregistered;
});
}
fn wake_send_waiters<T>(waiters: &mut LinkedList<SendWaitQueueEntry<T>>) {
// Remove all waiters from the waiting list in reverse order and wake them.
// We reverse the waiter list, so that the oldest waker (which is
// at the end of the list), gets woken first and has the best
// chance to send.
waiters.reverse_drain(|waiter| {
if let Some(handle) = waiter.task.take() {
handle.wake();
}
waiter.state = SendPollState::Unregistered;
});
}
/// Wakes up the last waiter and removes it from the wait queue
#[must_use]
fn return_oldest_receive_waiter(
waiters: &mut LinkedList<RecvWaitQueueEntry>,
) -> Option<Waker> {
let last_waiter = waiters.remove_last();
if let Some(last_waiter) = last_waiter {
last_waiter.state = RecvPollState::Notified;
last_waiter.task.take()
} else {
None
}
}
/// Internal state of the channel
struct ChannelState<T, A>
where
A: RingBuf<Item = T>,
{
/// Whether the channel had been closed
is_closed: bool,
/// The value which is stored inside the channel
buffer: A,
/// Futures which are waiting on receive
receive_waiters: LinkedList<RecvWaitQueueEntry>,
/// Futures which are waiting on send
send_waiters: LinkedList<SendWaitQueueEntry<T>>,
}
impl<T, A> ChannelState<T, A>
where
A: RingBuf<Item = T>,
{
fn new(buffer: A) -> ChannelState<T, A> {
ChannelState::<T, A> {
is_closed: false,
buffer,
receive_waiters: LinkedList::new(),
send_waiters: LinkedList::new(),
}
}
fn clear(&mut self) {
while !self.buffer.is_empty() {
self.buffer.pop();
}
}
fn close(&mut self) -> CloseStatus {
if self.is_closed {
return CloseStatus::AlreadyClosed;
}
self.is_closed = true;
// Wakeup all send and receive waiters, since they are now guaranteed
// to make progress.
wake_recv_waiters(&mut self.receive_waiters);
wake_send_waiters(&mut self.send_waiters);
CloseStatus::NewlyClosed
}
/// Attempt to send a value without waiting.
/// Returns a `Waker` if sending the value lead enabled a task to run.
fn try_send(&mut self, value: T) -> Result<Option<Waker>, TrySendError<T>> {
debug_assert!(
self.buffer.capacity() > 0,
"try_send is not supported for unbuffered channels"
);
if self.is_closed {
Err(TrySendError::Closed(value))
} else if self.buffer.can_push() {
self.buffer.push(value);
// Return the oldest receive waiter
Ok(return_oldest_receive_waiter(&mut self.receive_waiters))
} else {
Err(TrySendError::Full(value))
}
}
/// Tries to send a value to the channel.
/// If the value isn't available yet, the ChannelSendFuture gets added to the
/// wait queue at the channel, and will be signalled once ready.
/// If the channels is already closed, the value to send is returned.
/// This function is only safe as long as the `wait_node`s address is guaranteed
/// to be stable until it gets removed from the queue.
/// If sending the value succeeded, the `Waker` for a task which can receive
/// the value is returned.
unsafe fn send_or_register(
&mut self,
wait_node: &mut ListNode<SendWaitQueueEntry<T>>,
cx: &mut Context<'_>,
) -> (Poll<()>, Option<T>, Option<Waker>) {
match wait_node.state {
SendPollState::Unregistered => {
if self.is_closed {
let value = wait_node.value.take();
return (Poll::Ready(()), value, None);
}
if !self.buffer.can_push() {
// If the capacity is exhausted, register a waiter
wait_node.task = Some(cx.waker().clone());
wait_node.state = SendPollState::Registered;
self.send_waiters.add_front(wait_node);
// Return the oldest receive waiter
let waker =
return_oldest_receive_waiter(&mut self.receive_waiters);
return (Poll::Pending, None, waker);
} else {
// Otherwise copy the value directly into the channel
let value = wait_node
.value
.take()
.expect("wait_node must contain value");
self.buffer.push(value);
// Return the oldest receive waiter
let waker =
return_oldest_receive_waiter(&mut self.receive_waiters);
(Poll::Ready(()), None, waker)
}
}
SendPollState::Registered => {
// Since the channel wakes up all waiters and moves their states
// to unregistered there can't be space available in the channel.
// However the caller might have passed a different `Waker`.
// In this case we need to update it.
update_waker_ref(&mut wait_node.task, cx);
(Poll::Pending, None, None)
}
SendPollState::SendComplete => {
// The transfer is complete, and the sender has already been removed from the
// list of pending senders
(Poll::Ready(()), None, None)
}
}
}
/// If there is a send waiter, copy it's value into the channel buffer and complete it.
/// The method may only be called if there is space in the receive buffer.
#[must_use]
fn try_copy_value_from_oldest_waiter(&mut self) -> Option<Waker> {
let last_waiter = self.send_waiters.remove_last();
if let Some(last_waiter) = last_waiter {
let value = last_waiter
.value
.take()
.expect("wait_node must contain value");
self.buffer.push(value);
last_waiter.state = SendPollState::SendComplete;
last_waiter.task.take()
} else {
None
}
}
/// Tries to extract a value from the sending waiter which has been waiting
/// longest on the send operation to complete.
fn try_take_value_from_sender(&mut self) -> Option<(T, Option<Waker>)> {
// Safety: The method is only called inside the lock on a consistent
// list.
match self.send_waiters.remove_last() {
Some(last_sender) => {
// This path should be only used for 0 capacity queues.
// Since the list is not empty, a value is available.
// Extract it from the sender in order to return it
debug_assert_eq!(0, self.buffer.capacity());
// Safety: The sender can't be invalid, since we only add valid
// senders to the queue
let val =
last_sender.value.take().expect("Value must be available");
last_sender.state = SendPollState::SendComplete;
// Return the waiter
Some((val, last_sender.task.take()))
}
None => None,
}
}
/// Tries to receive a value from the channel without waiting.
fn try_receive(&mut self) -> Result<(T, Option<Waker>), TryReceiveError> {
if !self.buffer.is_empty() {
let val = self.buffer.pop();
// Since this means a space in the buffer had been freed,
// try to copy a value from a potential waiter into the channel.
let waker = self.try_copy_value_from_oldest_waiter();
Ok((val, waker))
} else if let Some((val, waker)) = self.try_take_value_from_sender() {
Ok((val, waker))
} else if self.is_closed {
Err(TryReceiveError::Closed)
} else {
Err(TryReceiveError::Empty)
}
}
/// Tries to read the value from the channel.
/// If the value isn't available yet, the ChannelReceiveFuture gets added to the
/// wait queue at the channel, and will be signalled once ready.
/// This function is only safe as long as the `wait_node`s address is guaranteed
/// to be stable until it gets removed from the queue.
unsafe fn receive_or_register(
&mut self,
wait_node: &mut ListNode<RecvWaitQueueEntry>,
cx: &mut Context<'_>,
) -> Poll<Option<(T, Option<Waker>)>> {
match wait_node.state {
RecvPollState::Unregistered | RecvPollState::Notified => {
wait_node.state = RecvPollState::Unregistered;
match self.try_receive() {
Ok(val) => Poll::Ready(Some(val)),
Err(TryReceiveError::Closed) => Poll::Ready(None),
Err(TryReceiveError::Empty) => {
// Added the task to the wait queue
wait_node.task = Some(cx.waker().clone());
wait_node.state = RecvPollState::Registered;
self.receive_waiters.add_front(wait_node);
Poll::Pending
}
}
}
RecvPollState::Registered => {
// Since the channel wakes up all waiters and moves their states
// to unregistered there can't be any value in the channel in
// this state. However the caller might have passed a different `Waker`.
// In this case we need to update it.
update_waker_ref(&mut wait_node.task, cx);
Poll::Pending
}
}
}
fn remove_send_waiter(
&mut self,
wait_node: &mut ListNode<SendWaitQueueEntry<T>>,
) {
// ChannelSendFuture only needs to get removed if it had been added to
// the wait queue of the channel.
// This has happened in the SendPollState::Registered case.
match wait_node.state {
SendPollState::Registered => {
// Safety: Due to the state, we know that the node must be part
// of the waiter list
if !unsafe { self.send_waiters.remove(wait_node) } {
// Panic if the address isn't found. This can only happen if the contract was
// violated, e.g. the WaitQueueEntry got moved after the initial poll.
panic!("Future could not be removed from wait queue");
}
wait_node.state = SendPollState::Unregistered;
}
SendPollState::Unregistered => {}
SendPollState::SendComplete => {
// Send was complete. In that case the queue item is not in the list
}
}
}
#[must_use]
fn remove_receive_waiter(
&mut self,
wait_node: &mut ListNode<RecvWaitQueueEntry>,
) -> Option<Waker> {
// ChannelReceiveFuture only needs to get removed if it had been added to
// the wait queue of the channel. This has happened in the RecvPollState::Registered case.
match wait_node.state {
RecvPollState::Registered => {
// Safety: Due to the state, we know that the node must be part
// of the waiter list
if !unsafe { self.receive_waiters.remove(wait_node) } {
// Panic if the address isn't found. This can only happen if the contract was
// violated, e.g. the WaitQueueEntry got moved after the initial poll.
panic!("Future could not be removed from wait queue");
}
wait_node.state = RecvPollState::Unregistered;
None
}
RecvPollState::Notified => {
// wakeup another receive waiter instead
wait_node.state = RecvPollState::Unregistered;
return_oldest_receive_waiter(&mut self.receive_waiters)
}
RecvPollState::Unregistered => None,
}
}
}
/// A channel which can be used to exchange values of type `T` between
/// concurrent tasks.
///
/// `A` represents the backing buffer for a Channel. E.g. a channel which
/// can buffer up to 4 `i32` values can be created via:
///
/// ```
/// # use futures_intrusive::channel::LocalChannel;
/// let channel: LocalChannel<i32, [i32; 4]> = LocalChannel::new();
/// ```
///
/// Tasks can receive values from the channel through the `receive` method.
/// The returned Future will get resolved when a value is sent into the channel.
/// Values can be sent into the channel through `send`.
/// The returned Future will get resolved when the value has been stored
/// inside the channel.
pub struct GenericChannel<MutexType: RawMutex, T, A>
where
A: RingBuf<Item = T>,
{
inner: Mutex<MutexType, ChannelState<T, A>>,
}
// The channel can be sent to other threads as long as it's not borrowed and the
// value in it can be sent to other threads.
unsafe impl<MutexType: RawMutex + Send, T: Send, A> Send
for GenericChannel<MutexType, T, A>
where
A: RingBuf<Item = T> + Send,
{
}
// The channel is thread-safe as long as a thread-safe mutex is used
unsafe impl<MutexType: RawMutex + Sync, T: Send, A> Sync
for GenericChannel<MutexType, T, A>
where
A: RingBuf<Item = T>,
{
}
impl<MutexType: RawMutex, T, A> core::fmt::Debug
for GenericChannel<MutexType, T, A>
where
A: RingBuf<Item = T>,
{
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct("Channel").finish()
}
}
impl<MutexType: RawMutex, T, A> GenericChannel<MutexType, T, A>
where
A: RingBuf<Item = T>,
{
/// Creates a new Channel, utilizing the default capacity that
/// the RingBuffer in `A` provides.
pub fn new() -> Self {
GenericChannel {
inner: Mutex::new(ChannelState::new(A::new())),
}
}
/// Creates a new Channel, which has storage for a `capacity` items.
/// Depending on the utilized `RingBuf` type, the capacity argument might
/// be ignored and the default capacity might be utilized.
pub fn with_capacity(capacity: usize) -> Self {
GenericChannel {
inner: Mutex::new(ChannelState::new(A::with_capacity(capacity))),
}
}
/// Returns a future that gets fulfilled when the value has been written to
/// the channel.
/// If the channel gets closed while the send is in progress, sending the
/// value will fail, and the future will deliver the value back.
pub fn send(&self, value: T) -> ChannelSendFuture<MutexType, T> {
ChannelSendFuture {
channel: Some(self),
wait_node: ListNode::new(SendWaitQueueEntry::new(value)),
_phantom: PhantomData,
}
}
/// Attempt to send the value without waiting.
///
/// This operation is not supported for unbuffered channels and will
/// panic if the capacity of the `RingBuf` is zero. The reason for this is
/// that the actual value transfer on unbuffered channels always happens
/// when a receiving task copies the value out of the sending task while it
/// is waiting. If the sending task does not wait, the value can not be
/// transferred. Since this method can therefore never yield a reasonable
/// result with unbuffered channels, it panics in order to highlight the
/// use of an inappropriate API.
pub fn try_send(&self, value: T) -> Result<(), TrySendError<T>> {
let result = { self.inner.lock().try_send(value) };
match result {
Ok(Some(waker)) => {
waker.wake();
Ok(())
}
Ok(None) => Ok(()),
Err(e) => Err(e),
}
}
/// Returns a future that gets fulfilled when a value is written to the channel.
/// If the channels gets closed, the future will resolve to `None`.
pub fn receive(&self) -> ChannelReceiveFuture<MutexType, T> {
ChannelReceiveFuture {
channel: Some(self),
wait_node: ListNode::new(RecvWaitQueueEntry::new()),
_phantom: PhantomData,
}
}
/// Attempt to receive a value of the channel without waiting.
pub fn try_receive(&self) -> Result<T, TryReceiveError> {
let result = { self.inner.lock().try_receive() };
match result {
Ok((val, waker)) => {
if let Some(waker) = waker {
waker.wake();
}
Ok(val)
}
Err(e) => Err(e),
}
}
/// Returns a stream that will receive values from this channel.
///
/// This stream does not yield `None` when the channel is empty,
/// instead it yields `None` when it is terminated.
pub fn stream(&self) -> ChannelStream<MutexType, T, A> {
ChannelStream {
channel: Some(self),
future: None,
}
}
/// Closes the channel.
/// All pending and future send attempts will fail.
/// Receive attempts will continue to succeed as long as there are items
/// stored inside the channel. Further attempts will fail.
pub fn close(&self) -> CloseStatus {
self.inner.lock().close()
}
}
impl<MutexType: RawMutex, T, A> ChannelSendAccess<T>
for GenericChannel<MutexType, T, A>
where
A: RingBuf<Item = T>,
{
unsafe fn send_or_register(
&self,
wait_node: &mut ListNode<SendWaitQueueEntry<T>>,
cx: &mut Context<'_>,
) -> (Poll<()>, Option<T>) {
let (poll_result, value, waker) =
{ self.inner.lock().send_or_register(wait_node, cx) };
if let Some(waker) = waker {
waker.wake();
}
(poll_result, value)
}
fn remove_send_waiter(
&self,
wait_node: &mut ListNode<SendWaitQueueEntry<T>>,
) {
self.inner.lock().remove_send_waiter(wait_node)
}
}
impl<MutexType: RawMutex, T, A> ChannelReceiveAccess<T>
for GenericChannel<MutexType, T, A>
where
A: RingBuf<Item = T>,
{
unsafe fn receive_or_register(
&self,
wait_node: &mut ListNode<RecvWaitQueueEntry>,
cx: &mut Context<'_>,
) -> Poll<Option<T>> {
let result = { self.inner.lock().receive_or_register(wait_node, cx) };
match result {
Poll::Ready(Some((val, waker))) => {
if let Some(waker) = waker {
waker.wake();
}
Poll::Ready(Some(val))
}
Poll::Ready(None) => Poll::Ready(None),
Poll::Pending => Poll::Pending,
}
}
fn remove_receive_waiter(
&self,
wait_node: &mut ListNode<RecvWaitQueueEntry>,
) {
let waker = { self.inner.lock().remove_receive_waiter(wait_node) };
if let Some(waker) = waker {
waker.wake();
}
}
}
/// A stream that receives from a `GenericChannel`.
///
/// Not driving the `ChannelStream` to completion after it has been polled
/// might lead to lost wakeup notifications.
#[derive(Debug)]
pub struct ChannelStream<'a, MutexType: RawMutex, T, A>
where
A: RingBuf<Item = T>,
{
channel: Option<&'a GenericChannel<MutexType, T, A>>,
future: Option<ChannelReceiveFuture<'a, MutexType, T>>,
}
impl<'a, MutexType, T, A> Stream for ChannelStream<'a, MutexType, T, A>
where
A: RingBuf<Item = T>,
MutexType: RawMutex,
{
type Item = T;
fn poll_next(
self: Pin<&mut Self>,
cx: &mut Context,
) -> Poll<Option<Self::Item>> {
// It might be possible to use Pin::map_unchecked here instead of the two unsafe APIs.
// However this didn't seem to work for some borrow checker reasons
// Safety: The next operations are safe, because Pin promises us that
// the address of the wait queue entry inside ChannelReceiveFuture is stable,
// and we don't move any fields inside the future until it gets dropped.
let mut_self: &mut Self = unsafe { Pin::get_unchecked_mut(self) };
match mut_self.channel.take() {
Some(channel) => {
// Poll the next element.
if mut_self.future.is_none() {
mut_self.future.replace(channel.receive());
}
let fut = mut_self.future.as_mut().unwrap();
// Safety: We guarantee that the pinned future will not move until
// it resolves by storing it as part of the pinned `Stream`
let poll = unsafe {
let pin_fut = Pin::new_unchecked(fut);
pin_fut.poll(cx)
};
// Future was resolved, drop it.
if poll.is_ready() {
mut_self.future.take();
// If the channel was terminated, we let it drop.
if let Poll::Ready(None) = &poll {
return poll;
}
}
// The channel was not terminated, so we reuse it.
mut_self.channel.replace(channel);
poll
}
// Channel was terminated.
None => Poll::Ready(None),
}
}
}
impl<'a, MutexType, T, A> FusedStream for ChannelStream<'a, MutexType, T, A>
where
A: RingBuf<Item = T>,
MutexType: RawMutex,
{
fn is_terminated(&self) -> bool {
self.channel.is_none()
}
}
// Export a non thread-safe version using NoopLock
/// A [`GenericChannel`] implementation which is not thread-safe.
pub type LocalChannel<T, A> = GenericChannel<NoopLock, T, ArrayBuf<T, A>>;
/// An unbuffered [`GenericChannel`] implementation which is not thread-safe.
pub type LocalUnbufferedChannel<T> = LocalChannel<T, [T; 0]>;
#[cfg(feature = "std")]
mod if_std {
use super::*;
// Export a thread-safe version using parking_lot::RawMutex
// TODO: We might also want to bind Channel to GenericChannel<..., FixedHeapBuf>,
// which performs less type-churn.
// However since we can't bind LocalChannel to that too due to no-std compatibility,
// this would to introduce some inconsistency between those types.
// It's also bit unfortunate that there are now `new()` and `with_capacity`
// methods on both types, but for the array backed implementation only
// `new()` is meaningful, while for the heap backed implementation only
// `with_capacity()` is meaningful.
/// A [`GenericChannel`] implementation backed by [`parking_lot`].
pub type Channel<T, A> =
GenericChannel<parking_lot::RawMutex, T, ArrayBuf<T, A>>;
/// An unbuffered [`GenericChannel`] implementation backed by [`parking_lot`].
pub type UnbufferedChannel<T> = Channel<T, [T; 0]>;
}
#[cfg(feature = "std")]
pub use self::if_std::*;
#[cfg(feature = "alloc")]
mod if_alloc {
use super::*;
/// Channel implementations where Sender and Receiver sides are cloneable
/// and owned.
/// The Futures produced by channels in this module don't require a lifetime
/// parameter.
pub mod shared {
use super::*;
use crate::channel::shared::{ChannelReceiveFuture, ChannelSendFuture};
use core::sync::atomic::{AtomicUsize, Ordering};
/// Shared Channel State, which is referenced by Senders and Receivers
struct GenericChannelSharedState<MutexType, T, A>
where
MutexType: RawMutex,
T: 'static,
A: RingBuf<Item = T>,
{
/// The amount of [`GenericSender`] instances which reference this state.
senders: AtomicUsize,
/// The amount of [`GenericReceiver`] instances which reference this state.
receivers: AtomicUsize,
/// The channel on which is acted.
channel: GenericChannel<MutexType, T, A>,
}
// Implement ChannelAccess trait for SharedChannelState, so that it can
// be used for dynamic dispatch in futures.
impl<MutexType, T, A> ChannelReceiveAccess<T>
for GenericChannelSharedState<MutexType, T, A>
where
MutexType: RawMutex,
A: RingBuf<Item = T>,
{
unsafe fn receive_or_register(
&self,
wait_node: &mut ListNode<RecvWaitQueueEntry>,
cx: &mut Context<'_>,
) -> Poll<Option<T>> {
self.channel.receive_or_register(wait_node, cx)
}
fn remove_receive_waiter(
&self,
wait_node: &mut ListNode<RecvWaitQueueEntry>,
) {
self.channel.remove_receive_waiter(wait_node)
}
}
// Implement ChannelAccess trait for SharedChannelState, so that it can
// be used for dynamic dispatch in futures.
impl<MutexType, T, A> ChannelSendAccess<T>
for GenericChannelSharedState<MutexType, T, A>
where
MutexType: RawMutex,
A: RingBuf<Item = T>,
{
unsafe fn send_or_register(
&self,
wait_node: &mut ListNode<SendWaitQueueEntry<T>>,
cx: &mut Context<'_>,
) -> (Poll<()>, Option<T>) {
self.channel.send_or_register(wait_node, cx)
}
fn remove_send_waiter(
&self,
wait_node: &mut ListNode<SendWaitQueueEntry<T>>,
) {
self.channel.remove_send_waiter(wait_node)
}
}
/// The sending side of a channel which can be used to exchange values
/// between concurrent tasks.
///
/// Values can be sent into the channel through `send`.
/// The returned Future will get resolved when the value has been stored inside the channel.
pub struct GenericSender<MutexType, T, A>
where
MutexType: RawMutex,
A: RingBuf<Item = T>,
T: 'static,
{
inner: alloc::sync::Arc<GenericChannelSharedState<MutexType, T, A>>,
}
/// The receiving side of a channel which can be used to exchange values
/// between concurrent tasks.
///
/// Tasks can receive values from the channel through the `receive` method.
/// The returned Future will get resolved when a value is sent into the channel.
pub struct GenericReceiver<MutexType, T, A>
where
MutexType: RawMutex,
A: RingBuf<Item = T>,
T: 'static,
{
inner: alloc::sync::Arc<GenericChannelSharedState<MutexType, T, A>>,
}
impl<MutexType, T, A> core::fmt::Debug for GenericSender<MutexType, T, A>
where
MutexType: RawMutex,
A: RingBuf<Item = T>,
{
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct("Sender").finish()
}
}
impl<MutexType, T, A> core::fmt::Debug for GenericReceiver<MutexType, T, A>
where
MutexType: RawMutex,
A: RingBuf<Item = T>,
{
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct("Receiver").finish()
}
}
impl<MutexType, T, A> Clone for GenericSender<MutexType, T, A>
where
MutexType: RawMutex,
A: RingBuf<Item = T>,
{
fn clone(&self) -> Self {
let old_size =
self.inner.senders.fetch_add(1, Ordering::Relaxed);
if old_size > (core::isize::MAX) as usize {
panic!("Reached maximum refcount");
}
GenericSender {
inner: self.inner.clone(),
}
}
}
impl<MutexType, T, A> Drop for GenericSender<MutexType, T, A>
where
MutexType: RawMutex,
A: RingBuf<Item = T>,
{
fn drop(&mut self) {
if self.inner.senders.fetch_sub(1, Ordering::Release) != 1 {
return;
}
core::sync::atomic::fence(Ordering::Acquire);
// Close the channel, before last sender gets destroyed
// TODO: We could potentially avoid this, if no receiver is left
self.inner.channel.close();
}
}
impl<MutexType, T, A> Clone for GenericReceiver<MutexType, T, A>
where
MutexType: RawMutex,
A: RingBuf<Item = T>,
{
fn clone(&self) -> Self {
let old_size =
self.inner.receivers.fetch_add(1, Ordering::Relaxed);
if old_size > (core::isize::MAX) as usize {
panic!("Reached maximum refcount");
}
GenericReceiver {
inner: self.inner.clone(),
}
}
}
impl<MutexType, T, A> Drop for GenericReceiver<MutexType, T, A>
where
MutexType: RawMutex,
A: RingBuf<Item = T>,
{
fn drop(&mut self) {
if self.inner.receivers.fetch_sub(1, Ordering::Release) != 1 {
return;
}
core::sync::atomic::fence(Ordering::Acquire);
// Close the channel, before last receiver gets destroyed
// TODO: We could potentially avoid this, if no sender is left
self.inner.channel.close();
// Now drop the content of the channel. This ensures that
// the content of the channel is dropped even if a sender is held.
self.inner.channel.inner.lock().clear();
}
}
/// Creates a new Channel which can be used to exchange values of type `T` between
/// concurrent tasks. The ends of the Channel are represented through
/// the returned Sender and Receiver.
/// Both the Sender and Receiver can be cloned in order to let more tasks
/// interact with the Channel.
///
/// As soon es either all Senders or all Receivers are closed, the Channel
/// itself will be closed.
///
/// The channel can buffer up to `capacity` items internally.
pub fn generic_channel<MutexType, T, A>(
capacity: usize,
) -> (
GenericSender<MutexType, T, A>,
GenericReceiver<MutexType, T, A>,
)
where
MutexType: RawMutex,
A: RingBuf<Item = T>,
T: Send,
{
let inner = alloc::sync::Arc::new(GenericChannelSharedState {
channel: GenericChannel::with_capacity(capacity),
senders: AtomicUsize::new(1),
receivers: AtomicUsize::new(1),
});
let sender = GenericSender {
inner: inner.clone(),
};
let receiver = GenericReceiver { inner };
(sender, receiver)
}
impl<MutexType, T, A> GenericSender<MutexType, T, A>
where
MutexType: 'static + RawMutex,
A: 'static + RingBuf<Item = T>,
{
/// Returns a future that gets fulfilled when the value has been written to
/// the channel.
/// If the channel gets closed while the send is in progress, sending the
/// value will fail, and the future will deliver the value back.
pub fn send(&self, value: T) -> ChannelSendFuture<MutexType, T> {
ChannelSendFuture {
channel: Some(self.inner.clone()),
wait_node: ListNode::new(SendWaitQueueEntry::new(value)),
_phantom: PhantomData,
}
}
/// Attempt to send the value without waiting.
///
/// This operation is not supported for unbuffered channels and will
/// panic if the capacity of the `RingBuf` is zero. The reason for this is
/// that the actual value transfer on unbuffered channels always happens
/// when a receiving task copies the value out of the sending task while it
/// is waiting. If the sending task does not wait, the value can not be
/// transferred. Since this method can therefore never yield a reasonable
/// result with unbuffered channels, it panics in order to highlight the
/// use of an inappropriate API.
pub fn try_send(&self, value: T) -> Result<(), TrySendError<T>> {
self.inner.channel.try_send(value)
}
/// Closes the channel.
/// All pending future send attempts will fail.
/// Receive attempts will continue to succeed as long as there are items
/// stored inside the channel. Further attempts will return `None`.
pub fn close(&self) -> CloseStatus {
self.inner.channel.close()
}
}
impl<MutexType, T, A> GenericReceiver<MutexType, T, A>
where
MutexType: 'static + RawMutex,
A: 'static + RingBuf<Item = T>,
{
/// Returns a future that gets fulfilled when a value is written to the channel.
/// If the channels gets closed, the future will resolve to `None`.
pub fn receive(&self) -> ChannelReceiveFuture<MutexType, T> {
ChannelReceiveFuture {
channel: Some(self.inner.clone()),
wait_node: ListNode::new(RecvWaitQueueEntry::new()),
_phantom: PhantomData,
}
}
/// Attempt to receive form the channel without waiting.
pub fn try_receive(&self) -> Result<T, TryReceiveError> {
self.inner.channel.try_receive()
}
/// Closes the channel.
/// All pending future send attempts will fail.
/// Receive attempts will continue to succeed as long as there are items
/// stored inside the channel. Further attempts will return `None`.
pub fn close(&self) -> CloseStatus {
self.inner.channel.close()
}
/// Returns a stream that will receive values from this channel.
///
/// This stream does not yield `None` when the channel is empty,
/// instead it yields `None` when it is terminated.
pub fn into_stream(self) -> SharedStream<MutexType, T, A> {
SharedStream {
receiver: self,
future: None,
is_terminated: false,
}
}
}
/// A stream that receives from channel using a `GenericReceiver`.
///
/// Not driving the `SharedStream` to completion after it has been polled
/// might lead to lost wakeup notifications.
#[derive(Debug)]
pub struct SharedStream<MutexType, T, A>
where
MutexType: 'static + RawMutex,
T: 'static,
A: 'static + RingBuf<Item = T>,
{
receiver: GenericReceiver<MutexType, T, A>,
future: Option<ChannelReceiveFuture<MutexType, T>>,
is_terminated: bool,
}
impl<MutexType, T, A> SharedStream<MutexType, T, A>
where
MutexType: RawMutex,
A: 'static + RingBuf<Item = T>,
{
/// Closes the channel.
/// All pending and future send attempts will fail.
/// Receive attempts will continue to succeed as long as there are items
/// stored inside the channel. Further attempts will fail.
pub fn close(&self) -> CloseStatus {
self.receiver.close()
}
}
impl<MutexType, T, A> Stream for SharedStream<MutexType, T, A>
where
MutexType: RawMutex,
A: 'static + RingBuf<Item = T>,
{
type Item = T;
fn poll_next(
mut self: Pin<&mut Self>,
cx: &mut Context,
) -> Poll<Option<Self::Item>> {
if self.is_terminated {
return Poll::Ready(None);
}
// Safety: This is safe since this is a pinned projection
// that lives as long as the scope.
let mut pin_fut = unsafe {
self.as_mut().map_unchecked_mut(|v| {
// Poll the next element.
if v.future.is_none() {
v.future.replace(v.receiver.receive());
}
&mut v.future
})
};
let poll = pin_fut.as_mut().as_pin_mut().unwrap().poll(cx);
// Future was resolved, drop it.
if poll.is_ready() {
pin_fut.set(None);
if let Poll::Ready(None) = &poll {
// Safety: This is safe because `is_terminated` is never
// considered pinned (i.e. not structuraly pinned).
unsafe {
self.get_unchecked_mut().is_terminated = true
};
}
}
poll
}
}
impl<MutexType, T, A> FusedStream for SharedStream<MutexType, T, A>
where
MutexType: RawMutex,
A: 'static + RingBuf<Item = T>,
{
fn is_terminated(&self) -> bool {
self.is_terminated
}
}
// Export parking_lot based shared channels in std mode
#[cfg(feature = "std")]
mod if_std {
use super::*;
use crate::buffer::GrowingHeapBuf;
/// A [`GenericSender`] implementation backed by [`parking_lot`].
///
/// Uses a `GrowingHeapBuf` whose capacity grows dynamically up to
/// the given limit. Refer to [`GrowingHeapBuf`] for more information.
///
/// [`GrowingHeapBuf`]: ../../buffer/struct.GrowingHeapBuf.html
pub type Sender<T> =
GenericSender<parking_lot::RawMutex, T, GrowingHeapBuf<T>>;
/// A [`GenericReceiver`] implementation backed by [`parking_lot`].
///
/// Uses a `GrowingHeapBuf` whose capacity grows dynamically up to
/// the given limit. Refer to [`GrowingHeapBuf`] for more information.
///
/// [`GrowingHeapBuf`]: ../../buffer/struct.GrowingHeapBuf.html
pub type Receiver<T> =
GenericReceiver<parking_lot::RawMutex, T, GrowingHeapBuf<T>>;
/// Creates a new channel with the given buffering capacity
///
/// Uses a `GrowingHeapBuf` whose capacity grows dynamically up to
/// the given limit. Refer to [`generic_channel`] and [`GrowingHeapBuf`] for more information.
///
/// [`GrowingHeapBuf`]: ../../buffer/struct.GrowingHeapBuf.html
///
/// ```
/// # use futures_intrusive::channel::shared::channel;
/// let (sender, receiver) = channel::<i32>(4);
/// ```
pub fn channel<T>(capacity: usize) -> (Sender<T>, Receiver<T>)
where
T: Send,
{
generic_channel::<parking_lot::RawMutex, T, GrowingHeapBuf<T>>(
capacity,
)
}
/// A [`GenericSender`] implementation backed by [`parking_lot`].
pub type UnbufferedSender<T> =
GenericSender<parking_lot::RawMutex, T, GrowingHeapBuf<T>>;
/// A [`GenericReceiver`] implementation backed by [`parking_lot`].
pub type UnbufferedReceiver<T> =
GenericReceiver<parking_lot::RawMutex, T, GrowingHeapBuf<T>>;
/// Creates a new unbuffered channel.
///
/// Refer to [`generic_channel`] for details.
pub fn unbuffered_channel<T>() -> (Sender<T>, Receiver<T>)
where
T: Send,
{
generic_channel::<parking_lot::RawMutex, T, GrowingHeapBuf<T>>(
0,
)
}
}
#[cfg(feature = "std")]
pub use self::if_std::*;
}
}
#[cfg(feature = "alloc")]
pub use self::if_alloc::*;