1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
//! An asynchronously awaitable timer
use super::clock::Clock;
use crate::{
intrusive_pairing_heap::{HeapNode, PairingHeap},
utils::update_waker_ref,
NoopLock,
};
use core::{pin::Pin, time::Duration};
use futures_core::{
future::{FusedFuture, Future},
task::{Context, Poll, Waker},
};
use lock_api::{Mutex, RawMutex};
/// Tracks how the future had interacted with the timer
#[derive(PartialEq)]
enum PollState {
/// The task is not registered at the wait queue at the timer
Unregistered,
/// The task was added to the wait queue at the timer
Registered,
/// The timer has expired and was thereby removed from the wait queue at
/// the timer. Having this extra state avoids to query the clock for an
/// extra time.
Expired,
}
/// Tracks the timer futures waiting state.
struct TimerQueueEntry {
/// Timestamp when the timer expires
expiry: u64,
/// The task handle of the waiting task
task: Option<Waker>,
/// Current polling state
state: PollState,
}
impl TimerQueueEntry {
/// Creates a new TimerQueueEntry
fn new(expiry: u64) -> TimerQueueEntry {
TimerQueueEntry {
expiry,
task: None,
state: PollState::Unregistered,
}
}
}
impl PartialEq for TimerQueueEntry {
fn eq(&self, other: &TimerQueueEntry) -> bool {
// This is technically not correct. However for the usage in this module
// we only need to compare timers by expiration.
self.expiry == other.expiry
}
}
impl Eq for TimerQueueEntry {}
impl PartialOrd for TimerQueueEntry {
fn partial_cmp(
&self,
other: &TimerQueueEntry,
) -> Option<core::cmp::Ordering> {
// Compare timer queue entries by expiration time
self.expiry.partial_cmp(&other.expiry)
}
}
impl Ord for TimerQueueEntry {
fn cmp(&self, other: &TimerQueueEntry) -> core::cmp::Ordering {
self.expiry.cmp(&other.expiry)
}
}
/// Internal state of the timer
struct TimerState {
/// The clock which is utilized
clock: &'static dyn Clock,
/// The heap of waiters, which are waiting for their timer to expire
waiters: PairingHeap<TimerQueueEntry>,
}
impl TimerState {
fn new(clock: &'static dyn Clock) -> TimerState {
TimerState {
clock,
waiters: PairingHeap::new(),
}
}
/// Registers the timer future at the Timer.
/// This function is only safe as long as the `wait_node`s address is guaranteed
/// to be stable until it gets removed from the queue.
unsafe fn try_wait(
&mut self,
wait_node: &mut HeapNode<TimerQueueEntry>,
cx: &mut Context<'_>,
) -> Poll<()> {
match wait_node.state {
PollState::Unregistered => {
let now = self.clock.now();
if now >= wait_node.expiry {
// The timer is already expired
wait_node.state = PollState::Expired;
Poll::Ready(())
} else {
// Added the task to the wait queue
wait_node.task = Some(cx.waker().clone());
wait_node.state = PollState::Registered;
self.waiters.insert(wait_node);
Poll::Pending
}
}
PollState::Registered => {
// Since the timer wakes up all waiters and moves their states to
// Expired when the timer expired, it can't be expired here yet.
// However the caller might have passed a different `Waker`.
// In this case we need to update it.
update_waker_ref(&mut wait_node.task, cx);
Poll::Pending
}
PollState::Expired => Poll::Ready(()),
}
}
fn remove_waiter(&mut self, wait_node: &mut HeapNode<TimerQueueEntry>) {
// TimerFuture only needs to get removed if it had been added to
// the wait queue of the timer. This has happened in the PollState::Registered case.
if let PollState::Registered = wait_node.state {
// Safety: Due to the state, we know that the node must be part
// of the waiter heap
unsafe { self.waiters.remove(wait_node) };
wait_node.state = PollState::Unregistered;
}
}
/// Returns a timestamp when the next timer expires.
///
/// For thread-safe timers, the returned value is not precise and subject to
/// race-conditions, since other threads can add timer in the meantime.
fn next_expiration(&self) -> Option<u64> {
// Safety: We ensure that any node in the heap remains alive
unsafe { self.waiters.peek_min().map(|first| first.as_ref().expiry) }
}
/// Checks whether any of the attached Futures is expired
fn check_expirations(&mut self) {
let now = self.clock.now();
while let Some(mut first) = self.waiters.peek_min() {
// Safety: We ensure that any node in the heap remains alive
unsafe {
let entry = first.as_mut();
let first_expiry = entry.expiry;
if now >= first_expiry {
// The timer is expired.
entry.state = PollState::Expired;
if let Some(task) = entry.task.take() {
task.wake();
}
} else {
// Remaining timers are not expired
break;
}
// Remove the expired timer
self.waiters.remove(entry);
}
}
}
}
/// Adapter trait that allows Futures to generically interact with timer
/// implementations via dynamic dispatch.
trait TimerAccess {
unsafe fn try_wait(
&self,
wait_node: &mut HeapNode<TimerQueueEntry>,
cx: &mut Context<'_>,
) -> Poll<()>;
fn remove_waiter(&self, wait_node: &mut HeapNode<TimerQueueEntry>);
}
/// An asynchronously awaitable timer which is bound to a thread.
///
/// The timer operates on millisecond precision and makes use of a configurable
/// clock source.
///
/// The timer allows to wait asynchronously either for a certain duration,
/// or until the provided [`Clock`] reaches a certain timestamp.
pub trait LocalTimer {
/// Returns a future that gets fulfilled after the given `Duration`
fn delay(&self, delay: Duration) -> LocalTimerFuture;
/// Returns a future that gets fulfilled when the utilized [`Clock`] reaches
/// the given timestamp.
fn deadline(&self, timestamp: u64) -> LocalTimerFuture;
}
/// An asynchronously awaitable thread-safe timer.
///
/// The timer operates on millisecond precision and makes use of a configurable
/// clock source.
///
/// The timer allows to wait asynchronously either for a certain duration,
/// or until the provided [`Clock`] reaches a certain timestamp.
pub trait Timer {
/// Returns a future that gets fulfilled after the given `Duration`
fn delay(&self, delay: Duration) -> TimerFuture;
/// Returns a future that gets fulfilled when the utilized [`Clock`] reaches
/// the given timestamp.
fn deadline(&self, timestamp: u64) -> TimerFuture;
}
/// An asynchronously awaitable timer.
///
/// The timer operates on millisecond precision and makes use of a configurable
/// clock source.
///
/// The timer allows to wait asynchronously either for a certain duration,
/// or until the provided [`Clock`] reaches a certain timestamp.
///
/// In order to unblock tasks that are waiting on the timer,
/// [`check_expirations`](GenericTimerService::check_expirations)
/// must be called in regular intervals on this timer service.
///
/// The timer can either be running on a separate timer thread (in case a
/// thread-safe timer type is utilize), or it can be integrated into an executor
/// in order to minimize context switches.
pub struct GenericTimerService<MutexType: RawMutex> {
inner: Mutex<MutexType, TimerState>,
}
// The timer can be sent to other threads as long as it's not borrowed
unsafe impl<MutexType: RawMutex + Send> Send
for GenericTimerService<MutexType>
{
}
// The timer is thread-safe as long as it uses a thread-safe mutex
unsafe impl<MutexType: RawMutex + Sync> Sync
for GenericTimerService<MutexType>
{
}
impl<MutexType: RawMutex> core::fmt::Debug for GenericTimerService<MutexType> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct("TimerService").finish()
}
}
impl<MutexType: RawMutex> GenericTimerService<MutexType> {
/// Creates a new Timer in the given state.
///
/// The Timer will query the provided [`Clock`] instance for the current
/// time whenever required.
///
/// In order to create a create a clock which utilizes system time,
/// [`StdClock`](super::StdClock) can be utilized.
/// In order to simulate time for test purposes,
/// [`MockClock`](super::MockClock) can be utilized.
pub fn new(clock: &'static dyn Clock) -> GenericTimerService<MutexType> {
GenericTimerService::<MutexType> {
inner: Mutex::new(TimerState::new(clock)),
}
}
/// Returns a timestamp when the next timer expires.
///
/// For thread-safe timers, the returned value is not precise and subject to
/// race-conditions, since other threads can add timer in the meantime.
///
/// Therefore adding any timer to the [`GenericTimerService`] should also
/// make sure to wake up the executor which polls for timeouts, in order to
/// let it capture the latest change.
pub fn next_expiration(&self) -> Option<u64> {
self.inner.lock().next_expiration()
}
/// Checks whether any of the attached [`TimerFuture`]s has expired.
/// In this case the associated task is woken up.
pub fn check_expirations(&self) {
self.inner.lock().check_expirations()
}
/// Returns a deadline based on the current timestamp plus the given Duration
fn deadline_from_now(&self, duration: Duration) -> u64 {
let now = self.inner.lock().clock.now();
let duration_ms =
core::cmp::min(duration.as_millis(), core::u64::MAX as u128) as u64;
now.saturating_add(duration_ms)
}
}
impl<MutexType: RawMutex> LocalTimer for GenericTimerService<MutexType> {
/// Returns a future that gets fulfilled after the given [`Duration`]
fn delay(&self, delay: Duration) -> LocalTimerFuture {
let deadline = self.deadline_from_now(delay);
LocalTimer::deadline(&*self, deadline)
}
/// Returns a future that gets fulfilled when the utilized [`Clock`] reaches
/// the given timestamp.
fn deadline(&self, timestamp: u64) -> LocalTimerFuture {
LocalTimerFuture {
timer: Some(self),
wait_node: HeapNode::new(TimerQueueEntry::new(timestamp)),
}
}
}
impl<MutexType: RawMutex> Timer for GenericTimerService<MutexType>
where
MutexType: Sync,
{
/// Returns a future that gets fulfilled after the given [`Duration`]
fn delay(&self, delay: Duration) -> TimerFuture {
let deadline = self.deadline_from_now(delay);
Timer::deadline(&*self, deadline)
}
/// Returns a future that gets fulfilled when the utilized [`Clock`] reaches
/// the given timestamp.
fn deadline(&self, timestamp: u64) -> TimerFuture {
TimerFuture {
timer_future: LocalTimerFuture {
timer: Some(self),
wait_node: HeapNode::new(TimerQueueEntry::new(timestamp)),
},
}
}
}
impl<MutexType: RawMutex> TimerAccess for GenericTimerService<MutexType> {
unsafe fn try_wait(
&self,
wait_node: &mut HeapNode<TimerQueueEntry>,
cx: &mut Context<'_>,
) -> Poll<()> {
self.inner.lock().try_wait(wait_node, cx)
}
fn remove_waiter(&self, wait_node: &mut HeapNode<TimerQueueEntry>) {
self.inner.lock().remove_waiter(wait_node)
}
}
/// A Future that is resolved once the requested time has elapsed.
#[must_use = "futures do nothing unless polled"]
pub struct LocalTimerFuture<'a> {
/// The Timer that is associated with this TimerFuture
timer: Option<&'a dyn TimerAccess>,
/// Node for waiting on the timer
wait_node: HeapNode<TimerQueueEntry>,
}
impl<'a> core::fmt::Debug for LocalTimerFuture<'a> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct("LocalTimerFuture").finish()
}
}
impl<'a> Future for LocalTimerFuture<'a> {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
// It might be possible to use Pin::map_unchecked here instead of the two unsafe APIs.
// However this didn't seem to work for some borrow checker reasons
// Safety: The next operations are safe, because Pin promises us that
// the address of the wait queue entry inside TimerFuture is stable,
// and we don't move any fields inside the future until it gets dropped.
let mut_self: &mut LocalTimerFuture =
unsafe { Pin::get_unchecked_mut(self) };
let timer =
mut_self.timer.expect("polled TimerFuture after completion");
let poll_res = unsafe { timer.try_wait(&mut mut_self.wait_node, cx) };
if poll_res.is_ready() {
// A value was available
mut_self.timer = None;
}
poll_res
}
}
impl<'a> FusedFuture for LocalTimerFuture<'a> {
fn is_terminated(&self) -> bool {
self.timer.is_none()
}
}
impl<'a> Drop for LocalTimerFuture<'a> {
fn drop(&mut self) {
// If this TimerFuture has been polled and it was added to the
// wait queue at the timer, it must be removed before dropping.
// Otherwise the timer would access invalid memory.
if let Some(timer) = self.timer {
timer.remove_waiter(&mut self.wait_node);
}
}
}
/// A Future that is resolved once the requested time has elapsed.
#[must_use = "futures do nothing unless polled"]
pub struct TimerFuture<'a> {
/// The Timer that is associated with this TimerFuture
timer_future: LocalTimerFuture<'a>,
}
// Safety: TimerFutures are only returned by GenericTimerService instances which
// are thread-safe (RawMutex: Sync).
unsafe impl<'a> Send for TimerFuture<'a> {}
impl<'a> core::fmt::Debug for TimerFuture<'a> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct("TimerFuture").finish()
}
}
impl<'a> Future for TimerFuture<'a> {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
// Safety: TimerFuture is a pure wrapper around LocalTimerFuture.
// The inner value is never moved
let inner_pin = unsafe {
Pin::map_unchecked_mut(self, |fut| &mut fut.timer_future)
};
inner_pin.poll(cx)
}
}
impl<'a> FusedFuture for TimerFuture<'a> {
fn is_terminated(&self) -> bool {
self.timer_future.is_terminated()
}
}
// Export a non thread-safe version using NoopLock
/// A [`GenericTimerService`] implementation which is not thread-safe.
pub type LocalTimerService = GenericTimerService<NoopLock>;
#[cfg(feature = "std")]
mod if_std {
use super::*;
// Export a thread-safe version using parking_lot::RawMutex
/// A [`GenericTimerService`] implementation backed by [`parking_lot`].
pub type TimerService = GenericTimerService<parking_lot::RawMutex>;
}
#[cfg(feature = "std")]
pub use self::if_std::*;