1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
// vim: tw=80
use futures_channel::oneshot;
use futures_task::{Context, Poll};
use std::{
cell::UnsafeCell,
clone::Clone,
collections::VecDeque,
future::Future,
ops::{Deref, DerefMut},
pin::Pin,
sync,
};
use super::{FutState, TryLockError};
#[cfg(feature = "tokio")] use tokio::task;
/// An RAII guard, much like `std::sync::RwLockReadGuard`. The wrapped data can
/// be accessed via its `Deref` implementation.
#[derive(Debug)]
pub struct RwLockReadGuard<T: ?Sized> {
rwlock: RwLock<T>
}
impl<T: ?Sized> Deref for RwLockReadGuard<T> {
type Target = T;
fn deref(&self) -> &T {
unsafe {&*self.rwlock.inner.data.get()}
}
}
impl<T: ?Sized> Drop for RwLockReadGuard<T> {
fn drop(&mut self) {
self.rwlock.unlock_reader();
}
}
/// An RAII guard, much like `std::sync::RwLockWriteGuard`. The wrapped data
/// can be accessed via its `Deref` and `DerefMut` implementations.
#[derive(Debug)]
pub struct RwLockWriteGuard<T: ?Sized> {
rwlock: RwLock<T>
}
impl<T: ?Sized> Deref for RwLockWriteGuard<T> {
type Target = T;
fn deref(&self) -> &T {
unsafe {&*self.rwlock.inner.data.get()}
}
}
impl<T: ?Sized> DerefMut for RwLockWriteGuard<T> {
fn deref_mut(&mut self) -> &mut T {
unsafe {&mut *self.rwlock.inner.data.get()}
}
}
impl<T: ?Sized> Drop for RwLockWriteGuard<T> {
fn drop(&mut self) {
self.rwlock.unlock_writer();
}
}
/// A `Future` representing a pending `RwLock` shared acquisition.
pub struct RwLockReadFut<T: ?Sized> {
state: FutState,
rwlock: RwLock<T>,
}
impl<T: ?Sized> RwLockReadFut<T> {
fn new(state: FutState, rwlock: RwLock<T>) -> Self {
RwLockReadFut{state, rwlock}
}
}
impl<T: ?Sized> Drop for RwLockReadFut<T> {
fn drop(&mut self) {
match self.state {
FutState::New => {
// RwLock hasn't yet been modified; nothing to do
},
FutState::Pending(ref mut rx) => {
rx.close();
match rx.try_recv() {
Ok(Some(())) => {
// This future received ownership of the lock, but got
// dropped before it was ever polled. Release the
// lock.
self.rwlock.unlock_reader()
},
Ok(None) => {
// Dropping the Future before it acquires the lock is
// equivalent to cancelling it.
},
Err(oneshot::Canceled) => {
// Never received ownership of the lock
}
}
},
FutState::Acquired => {
// The RwLockReadGuard will take care of releasing the RwLock
}
}
}
}
impl<T: ?Sized> Future for RwLockReadFut<T> {
type Output = RwLockReadGuard<T>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
let (result, new_state) = match self.state {
FutState::New => {
let mut lock_data = self.rwlock.inner.mutex.lock()
.expect("sync::Mutex::lock");
if lock_data.exclusive {
let (tx, mut rx) = oneshot::channel::<()>();
lock_data.read_waiters.push_back(tx);
// Even though we know it isn't ready, we need to poll the
// receiver in order to register our task for notification.
assert!(Pin::new(&mut rx).poll(cx).is_pending());
(Poll::Pending, FutState::Pending(rx))
} else {
lock_data.num_readers += 1;
let guard = RwLockReadGuard{rwlock: self.rwlock.clone()};
(Poll::Ready(guard), FutState::Acquired)
}
},
FutState::Pending(ref mut rx) => {
match Pin::new(rx).poll(cx) {
Poll::Pending => return Poll::Pending,
Poll::Ready(_) => {
let state = FutState::Acquired;
let result = Poll::Ready(
RwLockReadGuard{rwlock: self.rwlock.clone()}
);
(result, state)
} // LCOV_EXCL_LINE kcov false negative
}
},
FutState::Acquired => panic!("Double-poll of ready Future")
};
self.state = new_state;
result
}
}
/// A `Future` representing a pending `RwLock` exclusive acquisition.
pub struct RwLockWriteFut<T: ?Sized> {
state: FutState,
rwlock: RwLock<T>,
}
impl<T: ?Sized> RwLockWriteFut<T> {
fn new(state: FutState, rwlock: RwLock<T>) -> Self {
RwLockWriteFut{state, rwlock}
}
}
impl<T: ?Sized> Drop for RwLockWriteFut<T> {
fn drop(&mut self) {
match self.state {
FutState::New => {
// RwLock hasn't yet been modified; nothing to do
},
FutState::Pending(ref mut rx) => {
rx.close();
match rx.try_recv() {
Ok(Some(())) => {
// This future received ownership of the lock, but got
// dropped before it was ever polled. Release the
// lock.
self.rwlock.unlock_writer()
},
Ok(None) => {
// Dropping the Future before it acquires the lock is
// equivalent to cancelling it.
},
Err(oneshot::Canceled) => {
// Never received ownership of the lock
}
}
},
FutState::Acquired => {
// The RwLockWriteGuard will take care of releasing the RwLock
}
}
}
}
impl<T: ?Sized> Future for RwLockWriteFut<T> {
type Output = RwLockWriteGuard<T>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
let (result, new_state) = match self.state {
FutState::New => {
let mut lock_data = self.rwlock.inner.mutex.lock()
.expect("sync::Mutex::lock");
if lock_data.exclusive || lock_data.num_readers > 0 {
let (tx, mut rx) = oneshot::channel::<()>();
lock_data.write_waiters.push_back(tx);
// Even though we know it isn't ready, we need to poll the
// receiver in order to register our task for notification.
assert!(Pin::new(&mut rx).poll(cx).is_pending());
(Poll::Pending, FutState::Pending(rx))
} else {
lock_data.exclusive = true;
let guard = RwLockWriteGuard{rwlock: self.rwlock.clone()};
(Poll::Ready(guard), FutState::Acquired)
}
},
FutState::Pending(ref mut rx) => {
match Pin::new(rx).poll(cx) {
Poll::Pending => return Poll::Pending,
Poll::Ready(_) => {
let state = FutState::Acquired;
let result = Poll::Ready(
RwLockWriteGuard{rwlock: self.rwlock.clone()}
);
(result, state)
} // LCOV_EXCL_LINE kcov false negative
}
},
FutState::Acquired => panic!("Double-poll of ready Future")
};
self.state = new_state;
result
}
}
#[derive(Debug, Default)]
struct RwLockData {
/// True iff the `RwLock` is currently exclusively owned
exclusive: bool,
/// The number of tasks that currently have shared ownership of the RwLock
num_readers: u32,
// FIFO queue of waiting readers
read_waiters: VecDeque<oneshot::Sender<()>>,
// FIFO queue of waiting writers
write_waiters: VecDeque<oneshot::Sender<()>>,
}
#[derive(Debug, Default)]
struct Inner<T: ?Sized> {
mutex: sync::Mutex<RwLockData>,
data: UnsafeCell<T>,
}
/// A Futures-aware RwLock.
///
/// `std::sync::RwLock` cannot be used in an asynchronous environment like
/// Tokio, because an acquisition can block an entire reactor. This class can
/// be used instead. It functions much like `std::sync::RwLock`. Unlike that
/// class, it also has a builtin `Arc`, making it accessible from multiple
/// threads. It's also safe to `clone`. Also unlike `std::sync::RwLock`, this
/// class does not detect lock poisoning.
#[derive(Debug, Default)]
pub struct RwLock<T: ?Sized> {
inner: sync::Arc<Inner<T>>,
}
impl<T: ?Sized> Clone for RwLock<T> {
fn clone(&self) -> RwLock<T> {
RwLock { inner: self.inner.clone()}
}
}
impl<T> RwLock<T> {
/// Create a new `RwLock` in the unlocked state.
pub fn new(t: T) -> RwLock<T> {
let lock_data = RwLockData {
exclusive: false,
num_readers: 0,
read_waiters: VecDeque::new(),
write_waiters: VecDeque::new(),
}; // LCOV_EXCL_LINE kcov false negative
let inner = Inner {
mutex: sync::Mutex::new(lock_data),
data: UnsafeCell::new(t)
}; // LCOV_EXCL_LINE kcov false negative
RwLock { inner: sync::Arc::new(inner)}
}
/// Consumes the `RwLock` and returns the wrapped data. If the `RwLock`
/// still has multiple references (not necessarily locked), returns a copy
/// of `self` instead.
pub fn try_unwrap(self) -> Result<T, RwLock<T>> {
match sync::Arc::try_unwrap(self.inner) {
Ok(inner) => Ok({
// `unsafe` is no longer needed as of somewhere around 1.25.0.
// https://github.com/rust-lang/rust/issues/35067
#[allow(unused_unsafe)]
unsafe { inner.data.into_inner() }
}),
Err(arc) => Err(RwLock {inner: arc})
}
}
}
impl<T: ?Sized> RwLock<T> {
/// Returns a reference to the underlying data, if there are no other
/// clones of the `RwLock`.
///
/// Since this call borrows the `RwLock` mutably, no actual locking takes
/// place -- the mutable borrow statically guarantees no locks exist.
/// However, if the `RwLock` has already been cloned, then `None` will be
/// returned instead.
///
/// # Examples
///
/// ```
/// # use futures_locks::*;
/// # fn main() {
/// let mut lock = RwLock::<u32>::new(0);
/// *lock.get_mut().unwrap() += 5;
/// assert_eq!(lock.try_unwrap().unwrap(), 5);
/// # }
/// ```
pub fn get_mut(&mut self) -> Option<&mut T> {
if let Some(inner) = sync::Arc::get_mut(&mut self.inner) {
let lock_data = inner.mutex.get_mut().unwrap();
let data = unsafe { inner.data.get().as_mut() }.unwrap();
debug_assert!(!lock_data.exclusive);
debug_assert_eq!(lock_data.num_readers, 0);
Some(data)
} else {
None
}
}
/// Acquire the `RwLock` nonexclusively, read-only, blocking the task in the
/// meantime.
///
/// When the returned `Future` is ready, then this task will have read-only
/// access to the protected data.
///
/// # Examples
/// ```
/// # use futures_locks::*;
/// # use futures::executor::block_on;
/// # use futures::{Future, FutureExt};
/// # fn main() {
/// let rwlock = RwLock::<u32>::new(42);
/// let fut = rwlock.read().map(|mut guard| { *guard });
/// assert_eq!(block_on(fut), 42);
/// # }
///
/// ```
pub fn read(&self) -> RwLockReadFut<T> {
RwLockReadFut::new(FutState::New, self.clone())
}
/// Acquire the `RwLock` exclusively, read-write, blocking the task in the
/// meantime.
///
/// When the returned `Future` is ready, then this task will have read-write
/// access to the protected data.
///
/// # Examples
/// ```
/// # use futures_locks::*;
/// # use futures::executor::block_on;
/// # use futures::{Future, FutureExt};
/// # fn main() {
/// let rwlock = RwLock::<u32>::new(42);
/// let fut = rwlock.write().map(|mut guard| { *guard = 5;});
/// block_on(fut);
/// assert_eq!(rwlock.try_unwrap().unwrap(), 5);
/// # }
///
/// ```
pub fn write(&self) -> RwLockWriteFut<T> {
RwLockWriteFut::new(FutState::New, self.clone())
}
/// Attempts to acquire the `RwLock` nonexclusively.
///
/// If the operation would block, returns `Err` instead. Otherwise, returns
/// a guard (not a `Future`).
///
/// # Examples
/// ```
/// # use futures_locks::*;
/// # fn main() {
/// let mut lock = RwLock::<u32>::new(5);
/// let r = match lock.try_read() {
/// Ok(guard) => *guard,
/// Err(_) => panic!("Better luck next time!")
/// };
/// assert_eq!(5, r);
/// # }
/// ```
pub fn try_read(&self) -> Result<RwLockReadGuard<T>, TryLockError> {
let mut lock_data = self.inner.mutex.lock().expect("sync::Mutex::lock");
if lock_data.exclusive {
Err(TryLockError)
} else {
lock_data.num_readers += 1;
Ok(RwLockReadGuard{rwlock: self.clone()})
}
}
/// Attempts to acquire the `RwLock` exclusively.
///
/// If the operation would block, returns `Err` instead. Otherwise, returns
/// a guard (not a `Future`).
///
/// # Examples
/// ```
/// # use futures_locks::*;
/// # fn main() {
/// let mut lock = RwLock::<u32>::new(5);
/// match lock.try_write() {
/// Ok(mut guard) => *guard += 5,
/// Err(_) => panic!("Better luck next time!")
/// }
/// assert_eq!(10, lock.try_unwrap().unwrap());
/// # }
/// ```
pub fn try_write(&self) -> Result<RwLockWriteGuard<T>, TryLockError> {
let mut lock_data = self.inner.mutex.lock().expect("sync::Mutex::lock");
if lock_data.exclusive || lock_data.num_readers > 0 {
Err(TryLockError)
} else {
lock_data.exclusive = true;
Ok(RwLockWriteGuard{rwlock: self.clone()})
}
}
/// Release a shared lock of an `RwLock`.
fn unlock_reader(&self) {
let mut lock_data = self.inner.mutex.lock().expect("sync::Mutex::lock");
assert!(lock_data.num_readers > 0);
assert!(!lock_data.exclusive);
assert_eq!(lock_data.read_waiters.len(), 0);
lock_data.num_readers -= 1;
if lock_data.num_readers == 0 {
while let Some(tx) = lock_data.write_waiters.pop_front() {
if tx.send(()).is_ok() {
lock_data.exclusive = true;
return
}
}
}
}
/// Release an exclusive lock of an `RwLock`.
fn unlock_writer(&self) {
let mut lock_data = self.inner.mutex.lock().expect("sync::Mutex::lock");
assert!(lock_data.num_readers == 0);
assert!(lock_data.exclusive);
// First try to wake up any writers
while let Some(tx) = lock_data.write_waiters.pop_front() {
if tx.send(()).is_ok() {
return;
}
}
// If there are no writers, try to wake up readers
lock_data.exclusive = false;
lock_data.num_readers += lock_data.read_waiters.len() as u32;
for tx in lock_data.read_waiters.drain(..) {
// Ignore errors, which are due to a reader's future getting
// dropped before it was ready
let _ = tx.send(());
}
}
}
impl<T: 'static + ?Sized> RwLock<T> {
/// Acquires a `RwLock` nonexclusively and performs a computation on its
/// guarded value in a separate task. Returns a `Future` containing the
/// result of the computation.
///
/// When using Tokio, this method will often hold the `RwLock` for less time
/// than chaining a computation to [`read`](#method.read). The reason is
/// that Tokio polls all tasks promptly upon notification. However, Tokio
/// does not guarantee that it will poll all futures promptly when their
/// owning task gets notified. So it's best to hold `RwLock`s within their
/// own tasks, lest their continuations get blocked by slow stacked
/// combinators.
///
/// # Examples
///
/// ```
/// # use futures_locks::*;
/// # use futures::{Future, future::ready};
/// # use tokio::runtime::Runtime;
/// # fn main() {
/// let rwlock = RwLock::<u32>::new(5);
/// let mut rt = Runtime::new().unwrap();
/// let r = rt.block_on(async {
/// rwlock.with_read(|mut guard| {
/// ready(*guard)
/// }).await
/// });
/// assert_eq!(r, 5);
/// # }
/// ```
#[cfg(any(feature = "tokio", all(docsrs, rustdoc)))]
#[cfg_attr(docsrs, doc(cfg(feature = "tokio")))]
pub fn with_read<B, F, R>(&self, f: F)
-> impl Future<Output = R>
where F: FnOnce(RwLockReadGuard<T>) -> B + Send + 'static,
B: Future<Output = R> + Send + 'static,
R: Send + 'static,
T: Send
{
let jh = tokio::spawn({
let fut = self.read();
async move { f(fut.await).await }
});
async move { jh.await.unwrap() }
}
/// Like [`with_read`](#method.with_read) but for Futures that aren't
/// `Send`. Spawns a new task on a single-threaded Runtime to complete the
/// Future.
///
/// # Examples
///
/// ```
/// # use futures_locks::*;
/// # use futures::{Future, future::ready};
/// # use std::rc::Rc;
/// # use tokio::runtime::Runtime;
/// # fn main() {
/// // Note: Rc is not `Send`
/// let rwlock = RwLock::<Rc<u32>>::new(Rc::new(5));
/// let mut rt = Runtime::new().unwrap();
/// let r = rt.block_on(async {
/// rwlock.with_read_local(|mut guard| {
/// ready(**guard)
/// }).await
/// });
/// assert_eq!(r, 5);
/// # }
/// ```
#[cfg(any(feature = "tokio", all(docsrs, rustdoc)))]
#[cfg_attr(docsrs, doc(cfg(feature = "tokio")))]
pub fn with_read_local<B, F, R>(&self, f: F)
-> impl Future<Output = R>
where F: FnOnce(RwLockReadGuard<T>) -> B + 'static + Unpin,
B: Future<Output = R> + 'static,
R: 'static
{
let local = task::LocalSet::new();
let jh = local.spawn_local({
let fut = self.read();
async move { f(fut.await).await }
});
async move {
local.await;
jh.await.unwrap()
}
}
/// Acquires a `RwLock` exclusively and performs a computation on its
/// guarded value in a separate task. Returns a `Future` containing the
/// result of the computation.
///
/// When using Tokio, this method will often hold the `RwLock` for less time
/// than chaining a computation to [`write`](#method.write). The reason is
/// that Tokio polls all tasks promptly upon notification. However, Tokio
/// does not guarantee that it will poll all futures promptly when their
/// owning task gets notified. So it's best to hold `RwLock`s within their
/// own tasks, lest their continuations get blocked by slow stacked
/// combinators.
///
/// # Examples
///
/// ```
/// # use futures::{Future, future::ready};
/// # use futures_locks::*;
/// # use tokio::runtime::Runtime;
/// # fn main() {
/// let rwlock = RwLock::<u32>::new(0);
/// let mut rt = Runtime::new().unwrap();
/// let r = rt.block_on(async {
/// rwlock.with_write(|mut guard| {
/// *guard += 5;
/// ready(())
/// }).await
/// });
/// assert_eq!(rwlock.try_unwrap().unwrap(), 5);
/// # }
/// ```
#[cfg(any(feature = "tokio", all(docsrs, rustdoc)))]
#[cfg_attr(docsrs, doc(cfg(feature = "tokio")))]
pub fn with_write<B, F, R>(&self, f: F)
-> impl Future<Output = R>
where F: FnOnce(RwLockWriteGuard<T>) -> B + Send + 'static,
B: Future<Output = R> + Send + 'static,
R: Send + 'static,
T: Send
{
let jh = tokio::spawn({
let fut = self.write();
async move { f(fut.await).await }
});
async move { jh.await.unwrap() }
}
/// Like [`with_write`](#method.with_write) but for Futures that aren't
/// `Send`. Spawns a new task on a single-threaded Runtime to complete the
/// Future.
///
/// # Examples
///
/// ```
/// # use futures::{Future, future::ready};
/// # use futures_locks::*;
/// # use std::rc::Rc;
/// # use tokio::runtime::Runtime;
/// # fn main() {
/// // Note: Rc is not `Send`
/// let rwlock = RwLock::<Rc<u32>>::new(Rc::new(0));
/// let mut rt = Runtime::new().unwrap();
/// let r = rt.block_on(async {
/// rwlock.with_write_local(|mut guard| {
/// *Rc::get_mut(&mut *guard).unwrap() += 5;
/// ready(())
/// }).await
/// });
/// assert_eq!(*rwlock.try_unwrap().unwrap(), 5);
/// # }
/// ```
#[cfg(any(feature = "tokio", all(docsrs, rustdoc)))]
#[cfg_attr(docsrs, doc(cfg(feature = "tokio")))]
pub fn with_write_local<B, F, R>(&self, f: F)
-> impl Future<Output = R>
where F: FnOnce(RwLockWriteGuard<T>) -> B + 'static + Unpin,
B: Future<Output = R> + 'static,
R: 'static
{
let local = task::LocalSet::new();
let jh = local.spawn_local({
let fut = self.write();
async move { f(fut.await).await }
});
async move {
local.await;
jh.await.unwrap()
}
}
}
// Clippy doesn't like the Arc within Inner. But the access rules of the RwLock
// make it safe to send. std::sync::RwLock has the same Send impl
#[allow(clippy::non_send_fields_in_send_ty)]
unsafe impl<T: ?Sized + Send> Send for RwLock<T> {}
unsafe impl<T: ?Sized + Send + Sync> Sync for RwLock<T> {}
// LCOV_EXCL_START
#[cfg(test)]
mod t {
use super::*;
/// Pet Kcov
#[test]
fn debug() {
let m = RwLock::<u32>::new(0);
format!("{:?}", &m);
}
#[test]
fn test_default() {
let lock = RwLock::default();
let value: u32 = lock.try_unwrap().unwrap();
let expected = u32::default();
assert_eq!(expected, value);
}
}
// LCOV_EXCL_STOP