1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
// vim: tw=80

use futures_channel::oneshot;
use futures_task::{Context, Poll};
use std::{
    cell::UnsafeCell,
    clone::Clone,
    collections::VecDeque,
    future::Future,
    ops::{Deref, DerefMut},
    pin::Pin,
    sync,
};
use super::{FutState, TryLockError};
#[cfg(feature = "tokio")] use tokio::task;

/// An RAII guard, much like `std::sync::RwLockReadGuard`.  The wrapped data can
/// be accessed via its `Deref` implementation.
#[derive(Debug)]
pub struct RwLockReadGuard<T: ?Sized> {
    rwlock: RwLock<T>
}

impl<T: ?Sized> Deref for RwLockReadGuard<T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe {&*self.rwlock.inner.data.get()}
    }
}

impl<T: ?Sized> Drop for RwLockReadGuard<T> {
    fn drop(&mut self) {
        self.rwlock.unlock_reader();
    }
}

/// An RAII guard, much like `std::sync::RwLockWriteGuard`.  The wrapped data
/// can be accessed via its `Deref`  and `DerefMut` implementations.
#[derive(Debug)]
pub struct RwLockWriteGuard<T: ?Sized> {
    rwlock: RwLock<T>
}

impl<T: ?Sized> Deref for RwLockWriteGuard<T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe {&*self.rwlock.inner.data.get()}
    }
}

impl<T: ?Sized> DerefMut for RwLockWriteGuard<T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe {&mut *self.rwlock.inner.data.get()}
    }
}

impl<T: ?Sized> Drop for RwLockWriteGuard<T> {
    fn drop(&mut self) {
        self.rwlock.unlock_writer();
    }
}

/// A `Future` representing a pending `RwLock` shared acquisition.
pub struct RwLockReadFut<T: ?Sized> {
    state: FutState,
    rwlock: RwLock<T>,
}

impl<T: ?Sized> RwLockReadFut<T> {
    fn new(state: FutState, rwlock: RwLock<T>) -> Self {
        RwLockReadFut{state, rwlock}
    }
}

impl<T: ?Sized> Drop for RwLockReadFut<T> {
    fn drop(&mut self) {
        match self.state {
            FutState::New => {
                // RwLock hasn't yet been modified; nothing to do
            },
            FutState::Pending(ref mut rx) => {
                rx.close();
                match rx.try_recv() {
                    Ok(Some(())) => {
                        // This future received ownership of the lock, but got
                        // dropped before it was ever polled.  Release the
                        // lock.
                        self.rwlock.unlock_reader()
                    },
                    Ok(None) => {
                        // Dropping the Future before it acquires the lock is
                        // equivalent to cancelling it.
                    },
                    Err(oneshot::Canceled) => {
                        // Never received ownership of the lock
                    }
                }
            },
            FutState::Acquired => {
                // The RwLockReadGuard will take care of releasing the RwLock
            }
        }
    }
}

impl<T: ?Sized> Future for RwLockReadFut<T> {
    type Output = RwLockReadGuard<T>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
        let (result, new_state) = match self.state {
            FutState::New => {
                let mut lock_data = self.rwlock.inner.mutex.lock()
                    .expect("sync::Mutex::lock");
                if lock_data.exclusive {
                    let (tx, mut rx) = oneshot::channel::<()>();
                    lock_data.read_waiters.push_back(tx);
                    // Even though we know it isn't ready, we need to poll the
                    // receiver in order to register our task for notification.
                    assert!(Pin::new(&mut rx).poll(cx).is_pending());
                    (Poll::Pending, FutState::Pending(rx))
                } else {
                    lock_data.num_readers += 1;
                    let guard = RwLockReadGuard{rwlock: self.rwlock.clone()};
                    (Poll::Ready(guard), FutState::Acquired)
                }
            },
            FutState::Pending(ref mut rx) => {
                match Pin::new(rx).poll(cx) {
                    Poll::Pending => return Poll::Pending,
                    Poll::Ready(_) => {
                        let state = FutState::Acquired;
                        let result = Poll::Ready(
                            RwLockReadGuard{rwlock: self.rwlock.clone()}
                        );
                        (result, state)
                    }  // LCOV_EXCL_LINE   kcov false negative
                }
            },
            FutState::Acquired => panic!("Double-poll of ready Future")
        };
        self.state = new_state;
        result
    }
}

/// A `Future` representing a pending `RwLock` exclusive acquisition.
pub struct RwLockWriteFut<T: ?Sized> {
    state: FutState,
    rwlock: RwLock<T>,
}

impl<T: ?Sized> RwLockWriteFut<T> {
    fn new(state: FutState, rwlock: RwLock<T>) -> Self {
        RwLockWriteFut{state, rwlock}
    }
}

impl<T: ?Sized> Drop for RwLockWriteFut<T> {
    fn drop(&mut self) {
        match self.state {
            FutState::New => {
                // RwLock hasn't yet been modified; nothing to do
            },
            FutState::Pending(ref mut rx) => {
                rx.close();
                match rx.try_recv() {
                    Ok(Some(())) => {
                        // This future received ownership of the lock, but got
                        // dropped before it was ever polled.  Release the
                        // lock.
                        self.rwlock.unlock_writer()
                    },
                    Ok(None) => {
                        // Dropping the Future before it acquires the lock is
                        // equivalent to cancelling it.
                    },
                    Err(oneshot::Canceled) => {
                        // Never received ownership of the lock
                    }
                }
            },
            FutState::Acquired => {
                // The RwLockWriteGuard will take care of releasing the RwLock
            }
        }
    }
}

impl<T: ?Sized> Future for RwLockWriteFut<T> {
    type Output = RwLockWriteGuard<T>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
        let (result, new_state) = match self.state {
            FutState::New => {
                let mut lock_data = self.rwlock.inner.mutex.lock()
                    .expect("sync::Mutex::lock");
                if lock_data.exclusive || lock_data.num_readers > 0 {
                    let (tx, mut rx) = oneshot::channel::<()>();
                    lock_data.write_waiters.push_back(tx);
                    // Even though we know it isn't ready, we need to poll the
                    // receiver in order to register our task for notification.
                    assert!(Pin::new(&mut rx).poll(cx).is_pending());
                    (Poll::Pending, FutState::Pending(rx))
                } else {
                    lock_data.exclusive = true;
                    let guard = RwLockWriteGuard{rwlock: self.rwlock.clone()};
                    (Poll::Ready(guard), FutState::Acquired)
                }
            },
            FutState::Pending(ref mut rx) => {
                match Pin::new(rx).poll(cx) {
                    Poll::Pending => return Poll::Pending,
                    Poll::Ready(_) => {
                        let state = FutState::Acquired;
                        let result = Poll::Ready(
                            RwLockWriteGuard{rwlock: self.rwlock.clone()}
                        );
                        (result, state)
                    }  // LCOV_EXCL_LINE   kcov false negative
                }
            },
            FutState::Acquired => panic!("Double-poll of ready Future")
        };
        self.state = new_state;
        result
    }
}

#[derive(Debug, Default)]
struct RwLockData {
    /// True iff the `RwLock` is currently exclusively owned
    exclusive: bool,

    /// The number of tasks that currently have shared ownership of the RwLock
    num_readers: u32,

    // FIFO queue of waiting readers
    read_waiters: VecDeque<oneshot::Sender<()>>,

    // FIFO queue of waiting writers
    write_waiters: VecDeque<oneshot::Sender<()>>,
}

#[derive(Debug, Default)]
struct Inner<T: ?Sized> {
    mutex: sync::Mutex<RwLockData>,
    data: UnsafeCell<T>,
}

/// A Futures-aware RwLock.
///
/// `std::sync::RwLock` cannot be used in an asynchronous environment like
/// Tokio, because an acquisition can block an entire reactor.  This class can
/// be used instead.  It functions much like `std::sync::RwLock`.  Unlike that
/// class, it also has a builtin `Arc`, making it accessible from multiple
/// threads.  It's also safe to `clone`.  Also unlike `std::sync::RwLock`, this
/// class does not detect lock poisoning.
#[derive(Debug, Default)]
pub struct RwLock<T: ?Sized> {
    inner: sync::Arc<Inner<T>>,
}

impl<T: ?Sized> Clone for RwLock<T> {
    fn clone(&self) -> RwLock<T> {
        RwLock { inner: self.inner.clone()}
    }
}

impl<T> RwLock<T> {
    /// Create a new `RwLock` in the unlocked state.
    pub fn new(t: T) -> RwLock<T> {
        let lock_data = RwLockData {
            exclusive: false,
            num_readers: 0,
            read_waiters: VecDeque::new(),
            write_waiters: VecDeque::new(),
        };  // LCOV_EXCL_LINE   kcov false negative
        let inner = Inner {
            mutex: sync::Mutex::new(lock_data),
            data: UnsafeCell::new(t)
        };  // LCOV_EXCL_LINE   kcov false negative
        RwLock { inner: sync::Arc::new(inner)}
    }

    /// Consumes the `RwLock` and returns the wrapped data.  If the `RwLock`
    /// still has multiple references (not necessarily locked), returns a copy
    /// of `self` instead.
    pub fn try_unwrap(self) -> Result<T, RwLock<T>> {
        match sync::Arc::try_unwrap(self.inner) {
            Ok(inner) => Ok({
                // `unsafe` is no longer needed as of somewhere around 1.25.0.
                // https://github.com/rust-lang/rust/issues/35067
                #[allow(unused_unsafe)]
                unsafe { inner.data.into_inner() }
            }),
            Err(arc) => Err(RwLock {inner: arc})
        }
    }
}

impl<T: ?Sized> RwLock<T> {
    /// Returns a reference to the underlying data, if there are no other
    /// clones of the `RwLock`.
    ///
    /// Since this call borrows the `RwLock` mutably, no actual locking takes
    /// place -- the mutable borrow statically guarantees no locks exist.
    /// However, if the `RwLock` has already been cloned, then `None` will be
    /// returned instead.
    ///
    /// # Examples
    ///
    /// ```
    /// # use futures_locks::*;
    /// # fn main() {
    /// let mut lock = RwLock::<u32>::new(0);
    /// *lock.get_mut().unwrap() += 5;
    /// assert_eq!(lock.try_unwrap().unwrap(), 5);
    /// # }
    /// ```
    pub fn get_mut(&mut self) -> Option<&mut T> {
        if let Some(inner) = sync::Arc::get_mut(&mut self.inner) {
            let lock_data = inner.mutex.get_mut().unwrap();
            let data = unsafe { inner.data.get().as_mut() }.unwrap();
            debug_assert!(!lock_data.exclusive);
            debug_assert_eq!(lock_data.num_readers, 0);
            Some(data)
        } else {
            None
        }
    }

    /// Acquire the `RwLock` nonexclusively, read-only, blocking the task in the
    /// meantime.
    ///
    /// When the returned `Future` is ready, then this task will have read-only
    /// access to the protected data.
    ///
    /// # Examples
    /// ```
    /// # use futures_locks::*;
    /// # use futures::executor::block_on;
    /// # use futures::{Future, FutureExt};
    /// # fn main() {
    /// let rwlock = RwLock::<u32>::new(42);
    /// let fut = rwlock.read().map(|mut guard| { *guard });
    /// assert_eq!(block_on(fut), 42);
    /// # }
    ///
    /// ```
    pub fn read(&self) -> RwLockReadFut<T> {
        RwLockReadFut::new(FutState::New, self.clone())
    }

    /// Acquire the `RwLock` exclusively, read-write, blocking the task in the
    /// meantime.
    ///
    /// When the returned `Future` is ready, then this task will have read-write
    /// access to the protected data.
    ///
    /// # Examples
    /// ```
    /// # use futures_locks::*;
    /// # use futures::executor::block_on;
    /// # use futures::{Future, FutureExt};
    /// # fn main() {
    /// let rwlock = RwLock::<u32>::new(42);
    /// let fut = rwlock.write().map(|mut guard| { *guard = 5;});
    /// block_on(fut);
    /// assert_eq!(rwlock.try_unwrap().unwrap(), 5);
    /// # }
    ///
    /// ```
    pub fn write(&self) -> RwLockWriteFut<T> {
        RwLockWriteFut::new(FutState::New, self.clone())
    }

    /// Attempts to acquire the `RwLock` nonexclusively.
    ///
    /// If the operation would block, returns `Err` instead.  Otherwise, returns
    /// a guard (not a `Future`).
    ///
    /// # Examples
    /// ```
    /// # use futures_locks::*;
    /// # fn main() {
    /// let mut lock = RwLock::<u32>::new(5);
    /// let r = match lock.try_read() {
    ///     Ok(guard) => *guard,
    ///     Err(_) => panic!("Better luck next time!")
    /// };
    /// assert_eq!(5, r);
    /// # }
    /// ```
    pub fn try_read(&self) -> Result<RwLockReadGuard<T>, TryLockError> {
        let mut lock_data = self.inner.mutex.lock().expect("sync::Mutex::lock");
        if lock_data.exclusive {
            Err(TryLockError)
        } else {
            lock_data.num_readers += 1;
            Ok(RwLockReadGuard{rwlock: self.clone()})
        }
    }

    /// Attempts to acquire the `RwLock` exclusively.
    ///
    /// If the operation would block, returns `Err` instead.  Otherwise, returns
    /// a guard (not a `Future`).
    ///
    /// # Examples
    /// ```
    /// # use futures_locks::*;
    /// # fn main() {
    /// let mut lock = RwLock::<u32>::new(5);
    /// match lock.try_write() {
    ///     Ok(mut guard) => *guard += 5,
    ///     Err(_) => panic!("Better luck next time!")
    /// }
    /// assert_eq!(10, lock.try_unwrap().unwrap());
    /// # }
    /// ```
    pub fn try_write(&self) -> Result<RwLockWriteGuard<T>, TryLockError> {
        let mut lock_data = self.inner.mutex.lock().expect("sync::Mutex::lock");
        if lock_data.exclusive || lock_data.num_readers > 0 {
            Err(TryLockError)
        } else {
            lock_data.exclusive = true;
            Ok(RwLockWriteGuard{rwlock: self.clone()})
        }
    }

    /// Release a shared lock of an `RwLock`.
    fn unlock_reader(&self) {
        let mut lock_data = self.inner.mutex.lock().expect("sync::Mutex::lock");
        assert!(lock_data.num_readers > 0);
        assert!(!lock_data.exclusive);
        assert_eq!(lock_data.read_waiters.len(), 0);
        lock_data.num_readers -= 1;
        if lock_data.num_readers == 0 {
            while let Some(tx) = lock_data.write_waiters.pop_front() {
                if tx.send(()).is_ok() {
                    lock_data.exclusive = true;
                    return
                }
            }
        }
    }

    /// Release an exclusive lock of an `RwLock`.
    fn unlock_writer(&self) {
        let mut lock_data = self.inner.mutex.lock().expect("sync::Mutex::lock");
        assert!(lock_data.num_readers == 0);
        assert!(lock_data.exclusive);

        // First try to wake up any writers
        while let Some(tx) = lock_data.write_waiters.pop_front() {
            if tx.send(()).is_ok() {
                return;
            }
        }

        // If there are no writers, try to wake up readers
        lock_data.exclusive = false;
        lock_data.num_readers += lock_data.read_waiters.len() as u32;
        for tx in lock_data.read_waiters.drain(..) {
            // Ignore errors, which are due to a reader's future getting
            // dropped before it was ready
            let _ = tx.send(());
        }
    }
}

impl<T: 'static + ?Sized> RwLock<T> {
    /// Acquires a `RwLock` nonexclusively and performs a computation on its
    /// guarded value in a separate task.  Returns a `Future` containing the
    /// result of the computation.
    ///
    /// When using Tokio, this method will often hold the `RwLock` for less time
    /// than chaining a computation to [`read`](#method.read).  The reason is
    /// that Tokio polls all tasks promptly upon notification.  However, Tokio
    /// does not guarantee that it will poll all futures promptly when their
    /// owning task gets notified.  So it's best to hold `RwLock`s within their
    /// own tasks, lest their continuations get blocked by slow stacked
    /// combinators.
    ///
    /// # Examples
    ///
    /// ```
    /// # use futures_locks::*;
    /// # use futures::{Future, future::ready};
    /// # use tokio::runtime::Runtime;
    /// # fn main() {
    /// let rwlock = RwLock::<u32>::new(5);
    /// let mut rt = Runtime::new().unwrap();
    /// let r = rt.block_on(async {
    ///     rwlock.with_read(|mut guard| {
    ///         ready(*guard)
    ///     }).await
    /// });
    /// assert_eq!(r, 5);
    /// # }
    /// ```
    #[cfg(any(feature = "tokio", all(docsrs, rustdoc)))]
    #[cfg_attr(docsrs, doc(cfg(feature = "tokio")))]
    pub fn with_read<B, F, R>(&self, f: F)
        -> impl Future<Output = R>
        where F: FnOnce(RwLockReadGuard<T>) -> B + Send + 'static,
              B: Future<Output = R> + Send + 'static,
              R: Send + 'static,
              T: Send
    {
        let jh = tokio::spawn({
            let fut = self.read();
            async move { f(fut.await).await }
        });

        async move { jh.await.unwrap() }
    }

    /// Like [`with_read`](#method.with_read) but for Futures that aren't
    /// `Send`.  Spawns a new task on a single-threaded Runtime to complete the
    /// Future.
    ///
    /// # Examples
    ///
    /// ```
    /// # use futures_locks::*;
    /// # use futures::{Future, future::ready};
    /// # use std::rc::Rc;
    /// # use tokio::runtime::Runtime;
    /// # fn main() {
    /// // Note: Rc is not `Send`
    /// let rwlock = RwLock::<Rc<u32>>::new(Rc::new(5));
    /// let mut rt = Runtime::new().unwrap();
    /// let r = rt.block_on(async {
    ///     rwlock.with_read_local(|mut guard| {
    ///         ready(**guard)
    ///     }).await
    /// });
    /// assert_eq!(r, 5);
    /// # }
    /// ```
    #[cfg(any(feature = "tokio", all(docsrs, rustdoc)))]
    #[cfg_attr(docsrs, doc(cfg(feature = "tokio")))]
    pub fn with_read_local<B, F, R>(&self, f: F)
        -> impl Future<Output = R>
        where F: FnOnce(RwLockReadGuard<T>) -> B + 'static + Unpin,
              B: Future<Output = R> + 'static,
              R: 'static
    {
        let local = task::LocalSet::new();
        let jh = local.spawn_local({
            let fut = self.read();
            async move { f(fut.await).await }
        });

        async move {
            local.await;
            jh.await.unwrap()
        }
    }

    /// Acquires a `RwLock` exclusively and performs a computation on its
    /// guarded value in a separate task.  Returns a `Future` containing the
    /// result of the computation.
    ///
    /// When using Tokio, this method will often hold the `RwLock` for less time
    /// than chaining a computation to [`write`](#method.write).  The reason is
    /// that Tokio polls all tasks promptly upon notification.  However, Tokio
    /// does not guarantee that it will poll all futures promptly when their
    /// owning task gets notified.  So it's best to hold `RwLock`s within their
    /// own tasks, lest their continuations get blocked by slow stacked
    /// combinators.
    ///
    /// # Examples
    ///
    /// ```
    /// # use futures::{Future, future::ready};
    /// # use futures_locks::*;
    /// # use tokio::runtime::Runtime;
    /// # fn main() {
    /// let rwlock = RwLock::<u32>::new(0);
    /// let mut rt = Runtime::new().unwrap();
    /// let r = rt.block_on(async {
    ///     rwlock.with_write(|mut guard| {
    ///         *guard += 5;
    ///         ready(())
    ///     }).await
    /// });
    /// assert_eq!(rwlock.try_unwrap().unwrap(), 5);
    /// # }
    /// ```
    #[cfg(any(feature = "tokio", all(docsrs, rustdoc)))]
    #[cfg_attr(docsrs, doc(cfg(feature = "tokio")))]
    pub fn with_write<B, F, R>(&self, f: F)
        -> impl Future<Output = R>
        where F: FnOnce(RwLockWriteGuard<T>) -> B + Send + 'static,
              B: Future<Output = R> + Send + 'static,
              R: Send + 'static,
              T: Send
    {
        let jh = tokio::spawn({
            let fut = self.write();
            async move { f(fut.await).await }
        });

        async move { jh.await.unwrap() }
    }

    /// Like [`with_write`](#method.with_write) but for Futures that aren't
    /// `Send`.  Spawns a new task on a single-threaded Runtime to complete the
    /// Future.
    ///
    /// # Examples
    ///
    /// ```
    /// # use futures::{Future, future::ready};
    /// # use futures_locks::*;
    /// # use std::rc::Rc;
    /// # use tokio::runtime::Runtime;
    /// # fn main() {
    /// // Note: Rc is not `Send`
    /// let rwlock = RwLock::<Rc<u32>>::new(Rc::new(0));
    /// let mut rt = Runtime::new().unwrap();
    /// let r = rt.block_on(async {
    ///     rwlock.with_write_local(|mut guard| {
    ///         *Rc::get_mut(&mut *guard).unwrap() += 5;
    ///         ready(())
    ///     }).await
    /// });
    /// assert_eq!(*rwlock.try_unwrap().unwrap(), 5);
    /// # }
    /// ```
    #[cfg(any(feature = "tokio", all(docsrs, rustdoc)))]
    #[cfg_attr(docsrs, doc(cfg(feature = "tokio")))]
    pub fn with_write_local<B, F, R>(&self, f: F)
        -> impl Future<Output = R>
        where F: FnOnce(RwLockWriteGuard<T>) -> B + 'static + Unpin,
              B: Future<Output = R> + 'static,
              R: 'static
    {
        let local = task::LocalSet::new();
        let jh = local.spawn_local({
            let fut = self.write();
            async move { f(fut.await).await }
        });

        async move {
            local.await;
            jh.await.unwrap()
        }
    }
}

// Clippy doesn't like the Arc within Inner.  But the access rules of the RwLock
// make it safe to send.  std::sync::RwLock has the same Send impl
#[allow(clippy::non_send_fields_in_send_ty)]
unsafe impl<T: ?Sized + Send> Send for RwLock<T> {}
unsafe impl<T: ?Sized + Send + Sync> Sync for RwLock<T> {}

// LCOV_EXCL_START
#[cfg(test)]
mod t {
    use super::*;

    /// Pet Kcov
    #[test]
    fn debug() {
        let m = RwLock::<u32>::new(0);
        format!("{:?}", &m);
    }

    #[test]
    fn test_default() {
        let lock = RwLock::default();
        let value: u32 = lock.try_unwrap().unwrap();
        let expected = u32::default();

        assert_eq!(expected, value);
    }
}
// LCOV_EXCL_STOP