1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
// vim: tw=80
use futures_channel::oneshot;
use futures_task::{Context, Poll};
use std::{
cell::UnsafeCell,
clone::Clone,
collections::VecDeque,
future::Future,
ops::{Deref, DerefMut},
pin::Pin,
sync
};
use super::{FutState, TryLockError};
#[cfg(feature = "tokio")] use tokio::task;
/// An RAII mutex guard, much like `std::sync::MutexGuard`. The wrapped data
/// can be accessed via its `Deref` and `DerefMut` implementations.
#[derive(Debug)]
pub struct MutexGuard<T: ?Sized> {
mutex: Mutex<T>
}
impl<T: ?Sized> Drop for MutexGuard<T> {
fn drop(&mut self) {
self.mutex.unlock();
}
}
impl<T: ?Sized> Deref for MutexGuard<T> {
type Target = T;
fn deref(&self) -> &T {
unsafe {&*self.mutex.inner.data.get()}
}
}
impl<T: ?Sized> DerefMut for MutexGuard<T> {
fn deref_mut(&mut self) -> &mut T {
unsafe {&mut *self.mutex.inner.data.get()}
}
}
/// A `Future` representing a pending `Mutex` acquisition.
pub struct MutexFut<T: ?Sized> {
state: FutState,
mutex: Mutex<T>,
}
impl<T: ?Sized> MutexFut<T> {
fn new(state: FutState, mutex: Mutex<T>) -> Self {
MutexFut{state, mutex}
}
}
impl<T: ?Sized> Drop for MutexFut<T> {
fn drop(&mut self) {
match self.state {
FutState::New => {
// Mutex hasn't yet been modified; nothing to do
},
FutState::Pending(ref mut rx) => {
rx.close();
match rx.try_recv() {
Ok(Some(())) => {
// This future received ownership of the mutex, but got
// dropped before it was ever polled. Release the
// mutex.
self.mutex.unlock()
},
Ok(None) => {
// Dropping the Future before it acquires the Mutex is
// equivalent to cancelling it.
},
Err(oneshot::Canceled) => {
// Never received ownership of the mutex
}
}
},
FutState::Acquired => {
// The MutexGuard will take care of releasing the Mutex
}
}
}
}
impl<T: ?Sized> Future for MutexFut<T> {
type Output = MutexGuard<T>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
let (result, new_state) = match self.state {
FutState::New => {
let mut mtx_data = self.mutex.inner.mutex.lock()
.expect("sync::Mutex::lock");
if mtx_data.owned {
let (tx, mut rx) = oneshot::channel::<()>();
mtx_data.waiters.push_back(tx);
// Even though we know it isn't ready, we need to poll the
// receiver in order to register our task for notification.
assert!(Pin::new(&mut rx).poll(cx).is_pending());
(Poll::Pending, FutState::Pending(rx))
} else {
mtx_data.owned = true;
let guard = MutexGuard{mutex: self.mutex.clone()};
(Poll::Ready(guard), FutState::Acquired)
}
},
FutState::Pending(ref mut rx) => {
match Pin::new(rx).poll(cx) {
Poll::Pending => return Poll::Pending,
Poll::Ready(_) => {
let state = FutState::Acquired;
let result = Poll::Ready(
MutexGuard{mutex: self.mutex.clone()}
);
(result, state)
} //LCOV_EXCL_LINE kcov false negative
}
},
FutState::Acquired => panic!("Double-poll of ready Future")
};
self.state = new_state;
result
}
}
#[derive(Debug, Default)]
struct MutexData {
owned: bool,
// FIFO queue of waiting tasks.
waiters: VecDeque<oneshot::Sender<()>>,
}
#[derive(Debug, Default)]
struct Inner<T: ?Sized> {
mutex: sync::Mutex<MutexData>,
data: UnsafeCell<T>,
}
/// `MutexWeak` is a non-owning reference to a [`Mutex`]. `MutexWeak` is to
/// [`Mutex`] as [`std::sync::Weak`] is to [`std::sync::Arc`].
///
/// # Examples
/// ```
/// # use futures_locks::{Mutex,MutexGuard};
/// # fn main() {
/// let mutex = Mutex::<u32>::new(0);
/// let mutex_weak = Mutex::downgrade(&mutex);
/// let mutex_new = mutex_weak.upgrade().unwrap();
/// # }
/// ```
///
/// [`Mutex`]: struct.Mutex.html
/// [`std::sync::Weak`]: https://doc.rust-lang.org/std/sync/struct.Weak.html
/// [`std::sync::Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
#[derive(Debug)]
pub struct MutexWeak<T: ?Sized> {
inner: sync::Weak<Inner<T>>,
}
impl<T: ?Sized> MutexWeak<T> {
/// Tries to upgrade the `MutexWeak` to `Mutex`. If the `Mutex` was dropped
/// then the function return `None`.
pub fn upgrade(&self) -> Option<Mutex<T>> {
if let Some(inner) = self.inner.upgrade() {
return Some(Mutex{inner})
}
None
}
}
impl<T: ?Sized> Clone for MutexWeak<T> {
fn clone(&self) -> MutexWeak<T> {
MutexWeak {inner: self.inner.clone()}
}
}
// Clippy doesn't like the Arc within Inner. But the access rules of the Mutex
// make it safe to send. std::sync::Mutex has the same Send impl
#[allow(clippy::non_send_fields_in_send_ty)]
unsafe impl<T: ?Sized + Send> Send for MutexWeak<T> {}
unsafe impl<T: ?Sized + Send> Sync for MutexWeak<T> {}
/// A Futures-aware Mutex.
///
/// `std::sync::Mutex` cannot be used in an asynchronous environment like Tokio,
/// because a mutex acquisition can block an entire reactor. This class can be
/// used instead. It functions much like `std::sync::Mutex`. Unlike that
/// class, it also has a builtin `Arc`, making it accessible from multiple
/// threads. It's also safe to `clone`. Also unlike `std::sync::Mutex`, this
/// class does not detect lock poisoning.
///
/// # Examples
///
/// ```
/// # use futures_locks::*;
/// # use futures::executor::block_on;
/// # use futures::{Future, FutureExt};
/// # fn main() {
/// let mtx = Mutex::<u32>::new(0);
/// let fut = mtx.lock().map(|mut guard| { *guard += 5; });
/// block_on(fut);
/// assert_eq!(mtx.try_unwrap().unwrap(), 5);
/// # }
/// ```
#[derive(Debug, Default)]
pub struct Mutex<T: ?Sized> {
inner: sync::Arc<Inner<T>>,
}
impl<T: ?Sized> Clone for Mutex<T> {
fn clone(&self) -> Mutex<T> {
Mutex { inner: self.inner.clone()}
}
}
impl<T> Mutex<T> {
/// Create a new `Mutex` in the unlocked state.
pub fn new(t: T) -> Mutex<T> {
let mutex_data = MutexData {
owned: false,
waiters: VecDeque::new(),
};
let inner = Inner {
mutex: sync::Mutex::new(mutex_data),
data: UnsafeCell::new(t)
}; //LCOV_EXCL_LINE kcov false negative
Mutex { inner: sync::Arc::new(inner)}
}
/// Consumes the `Mutex` and returns the wrapped data. If the `Mutex` still
/// has multiple references (not necessarily locked), returns a copy of
/// `self` instead.
pub fn try_unwrap(self) -> Result<T, Mutex<T>> {
match sync::Arc::try_unwrap(self.inner) {
Ok(inner) => Ok({
// `unsafe` is no longer needed as of somewhere around 1.25.0.
// https://github.com/rust-lang/rust/issues/35067
#[allow(unused_unsafe)]
unsafe { inner.data.into_inner() }
}),
Err(arc) => Err(Mutex {inner: arc})
}
}
}
impl<T: ?Sized> Mutex<T> {
/// Create a [`MutexWeak`] reference to this `Mutex`.
///
/// [`MutexWeak`]: struct.MutexWeak.html
pub fn downgrade(this: &Mutex<T>) -> MutexWeak<T> {
MutexWeak {inner: sync::Arc::<Inner<T>>::downgrade(&this.inner)}
}
/// Returns a reference to the underlying data, if there are no other
/// clones of the `Mutex`.
///
/// Since this call borrows the `Mutex` mutably, no actual locking takes
/// place -- the mutable borrow statically guarantees no locks exist.
/// However, if the `Mutex` has already been cloned, then `None` will be
/// returned instead.
///
/// # Examples
///
/// ```
/// # use futures_locks::*;
/// # fn main() {
/// let mut mtx = Mutex::<u32>::new(0);
/// *mtx.get_mut().unwrap() += 5;
/// assert_eq!(mtx.try_unwrap().unwrap(), 5);
/// # }
/// ```
pub fn get_mut(&mut self) -> Option<&mut T> {
if let Some(inner) = sync::Arc::get_mut(&mut self.inner) {
let lock_data = inner.mutex.get_mut().unwrap();
let data = unsafe { inner.data.get().as_mut() }.unwrap();
debug_assert!(!lock_data.owned);
Some(data)
} else {
None
}
}
/// Acquires a `Mutex`, blocking the task in the meantime. When the
/// returned `Future` is ready, this task will have sole access to the
/// protected data.
pub fn lock(&self) -> MutexFut<T> {
MutexFut::new(FutState::New, self.clone())
}
/// Attempts to acquire the lock.
///
/// If the operation would block, returns `Err` instead. Otherwise, returns
/// a guard (not a `Future`).
///
/// # Examples
/// ```
/// # use futures_locks::*;
/// # fn main() {
/// let mut mtx = Mutex::<u32>::new(0);
/// match mtx.try_lock() {
/// Ok(mut guard) => *guard += 5,
/// Err(_) => println!("Better luck next time!")
/// };
/// # }
/// ```
pub fn try_lock(&self) -> Result<MutexGuard<T>, TryLockError> {
let mut mtx_data = self.inner.mutex.lock().expect("sync::Mutex::lock");
if mtx_data.owned {
Err(TryLockError)
} else {
mtx_data.owned = true;
Ok(MutexGuard{mutex: self.clone()})
}
}
/// Release the `Mutex`
fn unlock(&self) {
let mut mtx_data = self.inner.mutex.lock().expect("sync::Mutex::lock");
assert!(mtx_data.owned);
while let Some(tx) = mtx_data.waiters.pop_front() {
if tx.send(()).is_ok() {
return;
}
// An error indicates that the waiter's future was dropped
}
// Relinquish ownership
mtx_data.owned = false;
}
/// Returns true if the two `Mutex` point to the same data else false.
pub fn ptr_eq(this: &Mutex<T>, other: &Mutex<T>) -> bool {
sync::Arc::ptr_eq(&this.inner, &other.inner)
}
}
impl<T: 'static + ?Sized> Mutex<T> {
/// Acquires a `Mutex` and performs a computation on its guarded value in a
/// separate task. Returns a `Future` containing the result of the
/// computation.
///
/// When using Tokio, this method will often hold the `Mutex` for less time
/// than chaining a computation to [`lock`](#method.lock). The reason is
/// that Tokio polls all tasks promptly upon notification. However, Tokio
/// does not guarantee that it will poll all futures promptly when their
/// owning task gets notified. So it's best to hold `Mutex`es within their
/// own tasks, lest their continuations get blocked by slow stacked
/// combinators.
///
/// # Examples
///
/// ```
/// # use futures_locks::*;
/// # use futures::{Future, future::ready};
/// # use tokio::runtime::Runtime;
/// # fn main() {
/// let mtx = Mutex::<u32>::new(0);
/// let mut rt = Runtime::new().unwrap();
/// rt.block_on(async {
/// mtx.with(|mut guard| {
/// *guard += 5;
/// ready::<()>(())
/// }).await
/// });
/// assert_eq!(mtx.try_unwrap().unwrap(), 5);
/// # }
/// ```
#[cfg(any(feature = "tokio", all(docsrs, rustdoc)))]
#[cfg_attr(docsrs, doc(cfg(feature = "tokio")))]
pub fn with<B, F, R>(&self, f: F)
-> impl Future<Output = R>
where F: FnOnce(MutexGuard<T>) -> B + Send + 'static,
B: Future<Output = R> + Send + 'static,
R: Send + 'static,
T: Send
{
let jh = tokio::spawn({
let fut = self.lock();
async move { f(fut.await).await }
});
async move { jh.await.unwrap() }
}
/// Like [`with`](#method.with) but for Futures that aren't `Send`.
/// Spawns a new task on a single-threaded Runtime to complete the Future.
///
/// # Examples
///
/// ```
/// # use futures_locks::*;
/// # use futures::{Future, future::ready};
/// # use std::rc::Rc;
/// # use tokio::runtime::Runtime;
/// # fn main() {
/// // Note: Rc is not `Send`
/// let mtx = Mutex::<Rc<u32>>::new(Rc::new(0));
/// let mut rt = Runtime::new().unwrap();
/// rt.block_on(async {
/// mtx.with_local(|mut guard| {
/// *Rc::get_mut(&mut *guard).unwrap() += 5;
/// ready(())
/// }).await
/// });
/// assert_eq!(*mtx.try_unwrap().unwrap(), 5);
/// # }
/// ```
#[cfg(any(feature = "tokio", all(docsrs, rustdoc)))]
#[cfg_attr(docsrs, doc(cfg(feature = "tokio")))]
pub fn with_local<B, F, R>(&self, f: F)
-> impl Future<Output = R>
where F: FnOnce(MutexGuard<T>) -> B + 'static,
B: Future<Output = R> + 'static + Unpin,
R: 'static
{
let local = task::LocalSet::new();
let jh = local.spawn_local({
let fut = self.lock();
async move { f(fut.await).await }
});
async move {
local.await;
jh.await.unwrap()
}
}
}
// Clippy doesn't like the Arc within Inner. But the access rules of the Mutex
// make it safe to send. std::sync::Mutex has the same Send impl
#[allow(clippy::non_send_fields_in_send_ty)]
unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}
// LCOV_EXCL_START
#[cfg(test)]
mod t {
use super::*;
/// Pet Kcov
#[test]
fn debug() {
let m = Mutex::<u32>::new(0);
format!("{:?}", &m);
}
#[test]
fn test_default() {
let m = Mutex::default();
let value: u32 = m.try_unwrap().unwrap();
let expected = u32::default();
assert_eq!(expected, value);
}
}
// LCOV_EXCL_STOP