futures_util/sink/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
//! Sinks
//!
//! This module contains a number of functions for working with `Sink`s,
//! including the `SinkExt` trait which adds methods to `Sink` types.
use futures_core::{Stream, IntoFuture};
use futures_sink::Sink;
use super::future::Either;
mod close;
mod fanout;
mod flush;
mod err_into;
mod map_err;
mod send;
mod send_all;
mod with;
mod with_flat_map;
if_std! {
mod buffer;
pub use self::buffer::Buffer;
}
pub use self::close::Close;
pub use self::fanout::Fanout;
pub use self::flush::Flush;
pub use self::err_into::SinkErrInto;
pub use self::map_err::SinkMapErr;
pub use self::send::Send;
pub use self::send_all::SendAll;
pub use self::with::With;
pub use self::with_flat_map::WithFlatMap;
impl<T: ?Sized> SinkExt for T where T: Sink {}
/// An extension trait for `Sink`s that provides a variety of convenient
/// combinator functions.
pub trait SinkExt: Sink {
/// Composes a function *in front of* the sink.
///
/// This adapter produces a new sink that passes each value through the
/// given function `f` before sending it to `self`.
///
/// To process each value, `f` produces a *future*, which is then polled to
/// completion before passing its result down to the underlying sink. If the
/// future produces an error, that error is returned by the new sink.
///
/// Note that this function consumes the given sink, returning a wrapped
/// version, much like `Iterator::map`.
fn with<U, Fut, F>(self, f: F) -> With<Self, U, Fut, F>
where F: FnMut(U) -> Fut,
Fut: IntoFuture<Item = Self::SinkItem>,
Fut::Error: From<Self::SinkError>,
Self: Sized
{
with::new(self, f)
}
/// Composes a function *in front of* the sink.
///
/// This adapter produces a new sink that passes each value through the
/// given function `f` before sending it to `self`.
///
/// To process each value, `f` produces a *stream*, of which each value
/// is passed to the underlying sink. A new value will not be accepted until
/// the stream has been drained
///
/// Note that this function consumes the given sink, returning a wrapped
/// version, much like `Iterator::flat_map`.
///
/// # Examples
/// ---
/// Using this function with an iterator through use of the `stream::iter_ok()`
/// function
///
/// ```
/// # extern crate futures;
/// # extern crate futures_channel;
/// # extern crate futures_executor;
/// use futures::prelude::*;
/// use futures::stream;
/// use futures_channel::mpsc;
/// use futures_executor::block_on;
///
/// # fn main() {
/// let (tx, rx) = mpsc::channel::<i32>(5);
///
/// let tx = tx.with_flat_map(|x| {
/// stream::iter_ok(vec![42; x].into_iter().map(|y| y))
/// });
///
/// block_on(tx.send(5)).unwrap();
/// assert_eq!(block_on(rx.collect()), Ok(vec![42, 42, 42, 42, 42]));
/// # }
/// ```
fn with_flat_map<U, St, F>(self, f: F) -> WithFlatMap<Self, U, St, F>
where F: FnMut(U) -> St,
St: Stream<Item = Self::SinkItem, Error=Self::SinkError>,
Self: Sized
{
with_flat_map::new(self, f)
}
/*
fn with_map<U, F>(self, f: F) -> WithMap<Self, U, F>
where F: FnMut(U) -> Self::SinkItem,
Self: Sized;
fn with_filter<F>(self, f: F) -> WithFilter<Self, F>
where F: FnMut(Self::SinkItem) -> bool,
Self: Sized;
fn with_filter_map<U, F>(self, f: F) -> WithFilterMap<Self, U, F>
where F: FnMut(U) -> Option<Self::SinkItem>,
Self: Sized;
*/
/// Transforms the error returned by the sink.
fn sink_map_err<E, F>(self, f: F) -> SinkMapErr<Self, F>
where F: FnOnce(Self::SinkError) -> E,
Self: Sized,
{
map_err::new(self, f)
}
/// Map this sink's error to a different error type using the `Into` trait.
///
/// If wanting to map errors of a `Sink + Stream`, use `.sink_err_into().err_into()`.
fn sink_err_into<E>(self) -> err_into::SinkErrInto<Self, E>
where Self: Sized,
Self::SinkError: Into<E>,
{
err_into::new(self)
}
/// Adds a fixed-size buffer to the current sink.
///
/// The resulting sink will buffer up to `amt` items when the underlying
/// sink is unwilling to accept additional items. Calling `flush` on
/// the buffered sink will attempt to both empty the buffer and complete
/// processing on the underlying sink.
///
/// Note that this function consumes the given sink, returning a wrapped
/// version, much like `Iterator::map`.
///
/// This method is only available when the `std` feature of this
/// library is activated, and it is activated by default.
#[cfg(feature = "std")]
fn buffer(self, amt: usize) -> Buffer<Self>
where Self: Sized
{
buffer::new(self, amt)
}
/// Close the sink.
///
/// The sink itself is returned after closeing is complete.
fn close(self) -> Close<Self>
where Self: Sized
{
close::new(self)
}
/// Fanout items to multiple sinks.
///
/// This adapter clones each incoming item and forwards it to both this as well as
/// the other sink at the same time.
fn fanout<S>(self, other: S) -> Fanout<Self, S>
where Self: Sized,
Self::SinkItem: Clone,
S: Sink<SinkItem=Self::SinkItem, SinkError=Self::SinkError>
{
fanout::new(self, other)
}
/// Flush the sync, processing all pending items.
///
/// The sink itself is returned after flushing is complete; this adapter is
/// intended to be used when you want to stop sending to the sink until
/// all current requests are processed.
fn flush(self) -> Flush<Self>
where Self: Sized
{
flush::new(self)
}
/// A future that completes after the given item has been fully processed
/// into the sink, including flushing.
///
/// Note that, **because of the flushing requirement, it is usually better
/// to batch together items to send via `send_all`, rather than flushing
/// between each item.**
///
/// On completion, the sink is returned.
fn send(self, item: Self::SinkItem) -> Send<Self>
where Self: Sized
{
send::new(self, item)
}
/// A future that completes after the given stream has been fully processed
/// into the sink, including flushing.
///
/// This future will drive the stream to keep producing items until it is
/// exhausted, sending each item to the sink. It will complete once both the
/// stream is exhausted, the sink has received all items, and the sink has
/// been flushed. Note that the sink is **not** closed.
///
/// Doing `sink.send_all(stream)` is roughly equivalent to
/// `stream.forward(sink)`. The returned future will exhaust all items from
/// `stream` and send them to `self`.
///
/// On completion, the pair `(sink, source)` is returned.
fn send_all<S>(self, stream: S) -> SendAll<Self, S>
where S: Stream<Item = Self::SinkItem>,
Self::SinkError: From<S::Error>,
Self: Sized
{
send_all::new(self, stream)
}
/// Wrap this sink in an `Either` sink, making it the left-hand variant
/// of that `Either`.
///
/// This can be used in combination with the `right_sink` method to write `if`
/// statements that evaluate to different streams in different branches.
fn left_sink<B>(self) -> Either<Self, B>
where B: Sink<SinkItem = Self::SinkItem, SinkError = Self::SinkError>,
Self: Sized
{
Either::Left(self)
}
/// Wrap this stream in an `Either` stream, making it the right-hand variant
/// of that `Either`.
///
/// This can be used in combination with the `left_sink` method to write `if`
/// statements that evaluate to different streams in different branches.
fn right_sink<B>(self) -> Either<B, Self>
where B: Sink<SinkItem = Self::SinkItem, SinkError = Self::SinkError>,
Self: Sized
{
Either::Right(self)
}
}