futures_util/stream/futures_ordered.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
use std::cmp::{Eq, PartialEq, PartialOrd, Ord, Ordering};
use std::collections::BinaryHeap;
use std::fmt::{self, Debug};
use std::iter::FromIterator;
use futures_core::{Async, Future, IntoFuture, Poll, Stream};
use futures_core::task;
use stream::FuturesUnordered;
#[must_use = "futures do nothing unless polled"]
#[derive(Debug)]
struct OrderWrapper<T> {
item: T,
index: usize,
}
impl<T> PartialEq for OrderWrapper<T> {
fn eq(&self, other: &Self) -> bool {
self.index == other.index
}
}
impl<T> Eq for OrderWrapper<T> {}
impl<T> PartialOrd for OrderWrapper<T> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<T> Ord for OrderWrapper<T> {
fn cmp(&self, other: &Self) -> Ordering {
// BinaryHeap is a max heap, so compare backwards here.
other.index.cmp(&self.index)
}
}
impl<T> Future for OrderWrapper<T>
where T: Future
{
type Item = OrderWrapper<T::Item>;
type Error = T::Error;
fn poll(&mut self, cx: &mut task::Context) -> Poll<Self::Item, Self::Error> {
let result = try_ready!(self.item.poll(cx));
Ok(Async::Ready(OrderWrapper {
item: result,
index: self.index
}))
}
}
/// An unbounded queue of futures.
///
/// This "combinator" is similar to `FuturesUnordered`, but it imposes an order
/// on top of the set of futures. While futures in the set will race to
/// completion in parallel, results will only be returned in the order their
/// originating futures were added to the queue.
///
/// Futures are pushed into this queue and their realized values are yielded in
/// order. This structure is optimized to manage a large number of futures.
/// Futures managed by `FuturesOrdered` will only be polled when they generate
/// notifications. This reduces the required amount of work needed to coordinate
/// large numbers of futures.
///
/// When a `FuturesOrdered` is first created, it does not contain any futures.
/// Calling `poll` in this state will result in `Ok(Async::Ready(None))` to be
/// returned. Futures are submitted to the queue using `push`; however, the
/// future will **not** be polled at this point. `FuturesOrdered` will only
/// poll managed futures when `FuturesOrdered::poll` is called. As such, it
/// is important to call `poll` after pushing new futures.
///
/// If `FuturesOrdered::poll` returns `Ok(Async::Ready(None))` this means that
/// the queue is currently not managing any futures. A future may be submitted
/// to the queue at a later time. At that point, a call to
/// `FuturesOrdered::poll` will either return the future's resolved value
/// **or** `Ok(Async::Pending)` if the future has not yet completed. When
/// multiple futures are submitted to the queue, `FuturesOrdered::poll` will
/// return `Ok(Async::Pending)` until the first future completes, even if
/// some of the later futures have already completed.
///
/// Note that you can create a ready-made `FuturesOrdered` via the
/// `futures_ordered` function in the `stream` module, or you can start with an
/// empty queue with the `FuturesOrdered::new` constructor.
#[must_use = "streams do nothing unless polled"]
pub struct FuturesOrdered<T>
where T: Future
{
in_progress: FuturesUnordered<OrderWrapper<T>>,
queued_results: BinaryHeap<OrderWrapper<T::Item>>,
next_incoming_index: usize,
next_outgoing_index: usize,
}
/// Converts a list of futures into a `Stream` of results from the futures.
///
/// This function will take an list of futures (e.g. a vector, an iterator,
/// etc), and return a stream. The stream will yield items as they become
/// available on the futures internally, in the order that their originating
/// futures were submitted to the queue. If the futures complete out of order,
/// items will be stored internally within `FuturesOrdered` until all preceding
/// items have been yielded.
///
/// Note that the returned queue can also be used to dynamically push more
/// futures into the queue as they become available.
pub fn futures_ordered<I>(futures: I) -> FuturesOrdered<<I::Item as IntoFuture>::Future>
where
I: IntoIterator,
I::Item: IntoFuture,
{
futures.into_iter().map(|f| f.into_future()).collect()
}
impl<T> FuturesOrdered<T>
where T: Future
{
/// Constructs a new, empty `FuturesOrdered`
///
/// The returned `FuturesOrdered` does not contain any futures and, in this
/// state, `FuturesOrdered::poll` will return `Ok(Async::Ready(None))`.
pub fn new() -> FuturesOrdered<T> {
FuturesOrdered {
in_progress: FuturesUnordered::new(),
queued_results: BinaryHeap::new(),
next_incoming_index: 0,
next_outgoing_index: 0,
}
}
/// Returns the number of futures contained in the queue.
///
/// This represents the total number of in-flight futures, both
/// those currently processing and those that have completed but
/// which are waiting for earlier futures to complete.
pub fn len(&self) -> usize {
self.in_progress.len() + self.queued_results.len()
}
/// Returns `true` if the queue contains no futures
pub fn is_empty(&self) -> bool {
self.in_progress.is_empty() && self.queued_results.is_empty()
}
/// Push a future into the queue.
///
/// This function submits the given future to the internal set for managing.
/// This function will not call `poll` on the submitted future. The caller
/// must ensure that `FuturesOrdered::poll` is called in order to receive
/// task notifications.
pub fn push(&mut self, future: T) {
let wrapped = OrderWrapper {
item: future,
index: self.next_incoming_index,
};
self.next_incoming_index += 1;
self.in_progress.push(wrapped);
}
}
impl<T> Stream for FuturesOrdered<T>
where T: Future
{
type Item = T::Item;
type Error = T::Error;
fn poll_next(&mut self, cx: &mut task::Context) -> Poll<Option<Self::Item>, Self::Error> {
// Get any completed futures from the unordered set.
loop {
match self.in_progress.poll_next(cx)? {
Async::Ready(Some(result)) => self.queued_results.push(result),
Async::Ready(None) | Async::Pending => break,
}
}
if let Some(next_result) = self.queued_results.peek() {
// PeekMut::pop is not stable yet QQ
if next_result.index != self.next_outgoing_index {
return Ok(Async::Pending);
}
} else if !self.in_progress.is_empty() {
return Ok(Async::Pending);
} else {
return Ok(Async::Ready(None));
}
let next_result = self.queued_results.pop().unwrap();
self.next_outgoing_index += 1;
Ok(Async::Ready(Some(next_result.item)))
}
}
impl<T: Debug> Debug for FuturesOrdered<T>
where T: Future
{
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "FuturesOrdered {{ ... }}")
}
}
impl<F: Future> FromIterator<F> for FuturesOrdered<F> {
fn from_iter<T>(iter: T) -> Self
where
T: IntoIterator<Item = F>,
{
let acc = FuturesOrdered::new();
iter.into_iter().fold(acc, |mut acc, item| { acc.push(item); acc })
}
}