1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
use std::sync::Arc;
use std::time::Duration;
use serde::ser::{Serialize, SerializeMap, SerializeSeq, Serializer};
use serde_json::json;
use crate::category::{Category, CategoryHandle, CategoryPairHandle};
use crate::category_color::CategoryColor;
use crate::counters::{Counter, CounterHandle};
use crate::cpu_delta::CpuDelta;
use crate::fast_hash_map::FastHashMap;
use crate::frame::{Frame, FrameInfo};
use crate::frame_table::{InternalFrame, InternalFrameLocation};
use crate::global_lib_table::{GlobalLibTable, LibraryHandle};
use crate::lib_mappings::LibMappings;
use crate::library_info::LibraryInfo;
use crate::process::{Process, ThreadHandle};
use crate::reference_timestamp::ReferenceTimestamp;
use crate::string_table::{GlobalStringIndex, GlobalStringTable};
use crate::thread::{ProcessHandle, Thread};
use crate::{MarkerSchema, MarkerTiming, ProfilerMarker, SymbolTable, Timestamp};
/// The sampling interval used during profile recording.
///
/// This doesn't have to match the actual delta between sample timestamps.
/// It just describes the intended interval.
///
/// For profiles without sampling data, this can be set to a meaningless
/// dummy value.
#[derive(Debug, Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct SamplingInterval {
nanos: u64,
}
impl SamplingInterval {
/// Create a sampling interval from a sampling frequency in Hz.
///
/// Panics on zero or negative values.
pub fn from_hz(samples_per_second: f32) -> Self {
assert!(samples_per_second > 0.0);
let nanos = (1_000_000_000.0 / samples_per_second) as u64;
Self::from_nanos(nanos)
}
/// Create a sampling interval from a value in milliseconds.
pub fn from_millis(millis: u64) -> Self {
Self::from_nanos(millis * 1_000_000)
}
/// Create a sampling interval from a value in nanoseconds
pub fn from_nanos(nanos: u64) -> Self {
Self { nanos }
}
/// Convert the interval to nanoseconds.
pub fn nanos(&self) -> u64 {
self.nanos
}
/// Convert the interval to float seconds.
pub fn as_secs_f64(&self) -> f64 {
self.nanos as f64 / 1_000_000_000.0
}
}
impl From<Duration> for SamplingInterval {
fn from(duration: Duration) -> Self {
Self::from_nanos(duration.as_nanos() as u64)
}
}
/// A handle for an interned string, returned from [`Profile::intern_string`].
#[derive(Debug, Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct StringHandle(GlobalStringIndex);
/// Stores the profile data and can be serialized as JSON, via [`serde::Serialize`].
///
/// The profile data is organized into a list of processes with threads.
/// Each thread has its own samples and markers.
///
/// ```
/// use fxprof_processed_profile::{Profile, CategoryHandle, CpuDelta, Frame, FrameInfo, FrameFlags, SamplingInterval, Timestamp};
/// use std::time::SystemTime;
///
/// # fn write_profile(output_file: std::fs::File) -> Result<(), Box<dyn std::error::Error>> {
/// let mut profile = Profile::new("My app", SystemTime::now().into(), SamplingInterval::from_millis(1));
/// let process = profile.add_process("App process", 54132, Timestamp::from_millis_since_reference(0.0));
/// let thread = profile.add_thread(process, 54132000, Timestamp::from_millis_since_reference(0.0), true);
/// profile.set_thread_name(thread, "Main thread");
/// let stack = vec![
/// FrameInfo { frame: Frame::Label(profile.intern_string("Root node")), category_pair: CategoryHandle::OTHER.into(), flags: FrameFlags::empty() },
/// FrameInfo { frame: Frame::Label(profile.intern_string("First callee")), category_pair: CategoryHandle::OTHER.into(), flags: FrameFlags::empty() }
/// ];
/// profile.add_sample(thread, Timestamp::from_millis_since_reference(0.0), stack.into_iter(), CpuDelta::ZERO, 1);
///
/// let writer = std::io::BufWriter::new(output_file);
/// serde_json::to_writer(writer, &profile)?;
/// # Ok(())
/// # }
/// ```
#[derive(Debug)]
pub struct Profile {
pub(crate) product: String,
pub(crate) interval: SamplingInterval,
pub(crate) global_libs: GlobalLibTable,
pub(crate) kernel_libs: LibMappings<LibraryHandle>,
pub(crate) categories: Vec<Category>, // append-only for stable CategoryHandles
pub(crate) processes: Vec<Process>, // append-only for stable ProcessHandles
pub(crate) counters: Vec<Counter>,
pub(crate) threads: Vec<Thread>, // append-only for stable ThreadHandles
pub(crate) reference_timestamp: ReferenceTimestamp,
pub(crate) string_table: GlobalStringTable,
pub(crate) marker_schemas: FastHashMap<&'static str, MarkerSchema>,
used_pids: FastHashMap<u32, u32>,
used_tids: FastHashMap<u32, u32>,
}
impl Profile {
/// Create a new profile.
///
/// The `product` is the name of the main application which was profiled.
/// The `reference_timestamp` is some arbitrary absolute timestamp which all
/// other timestamps in the profile data are relative to. The `interval` is the intended
/// time delta between samples.
pub fn new(
product: &str,
reference_timestamp: ReferenceTimestamp,
interval: SamplingInterval,
) -> Self {
Profile {
interval,
product: product.to_string(),
threads: Vec::new(),
global_libs: GlobalLibTable::new(),
kernel_libs: LibMappings::new(),
reference_timestamp,
processes: Vec::new(),
string_table: GlobalStringTable::new(),
marker_schemas: FastHashMap::default(),
categories: vec![Category {
name: "Other".to_string(),
color: CategoryColor::Gray,
subcategories: Vec::new(),
}],
used_pids: FastHashMap::default(),
used_tids: FastHashMap::default(),
counters: Vec::new(),
}
}
/// Change the declared sampling interval.
pub fn set_interval(&mut self, interval: SamplingInterval) {
self.interval = interval;
}
/// Change the reference timestamp.
pub fn set_reference_timestamp(&mut self, reference_timestamp: ReferenceTimestamp) {
self.reference_timestamp = reference_timestamp;
}
/// Change the product name.
pub fn set_product(&mut self, product: &str) {
self.product = product.to_string();
}
/// Add a category and return its handle.
///
/// Categories are used for stack frames and markers, as part of a "category pair".
pub fn add_category(&mut self, name: &str, color: CategoryColor) -> CategoryHandle {
let handle = CategoryHandle(self.categories.len() as u16);
self.categories.push(Category {
name: name.to_string(),
color,
subcategories: Vec::new(),
});
handle
}
/// Add a subcategory for a category, and return the "category pair" handle.
pub fn add_subcategory(&mut self, category: CategoryHandle, name: &str) -> CategoryPairHandle {
let subcategory = self.categories[category.0 as usize].add_subcategory(name.into());
CategoryPairHandle(category, Some(subcategory))
}
/// Add an empty process. The name, pid and start time can be changed afterwards,
/// but they are required here because they have to be present in the profile JSON.
pub fn add_process(&mut self, name: &str, pid: u32, start_time: Timestamp) -> ProcessHandle {
let pid = self.make_unique_pid(pid);
let handle = ProcessHandle(self.processes.len());
self.processes.push(Process::new(name, pid, start_time));
handle
}
fn make_unique_pid(&mut self, pid: u32) -> String {
Self::make_unique_pid_or_tid(&mut self.used_pids, pid)
}
fn make_unique_tid(&mut self, tid: u32) -> String {
Self::make_unique_pid_or_tid(&mut self.used_tids, tid)
}
/// Appends ".1" / ".2" etc. to the pid or tid if needed.
///
/// The map contains the next suffix for each pid/tid, or no entry if the pid/tid
/// hasn't been used before and needs no suffix.
fn make_unique_pid_or_tid(map: &mut FastHashMap<u32, u32>, id: u32) -> String {
match map.entry(id) {
std::collections::hash_map::Entry::Occupied(mut entry) => {
let suffix = *entry.get();
*entry.get_mut() += 1;
format!("{id}.{suffix}")
}
std::collections::hash_map::Entry::Vacant(entry) => {
entry.insert(1);
format!("{id}")
}
}
}
/// Create a counter. Counters let you make graphs with a time axis and a Y axis. One example of a
/// counter is memory usage.
///
/// # Example
///
/// ```
/// use fxprof_processed_profile::{Profile, CategoryHandle, CpuDelta, Frame, SamplingInterval, Timestamp};
/// use std::time::SystemTime;
///
/// let mut profile = Profile::new("My app", SystemTime::now().into(), SamplingInterval::from_millis(1));
/// let process = profile.add_process("App process", 54132, Timestamp::from_millis_since_reference(0.0));
/// let memory_counter = profile.add_counter(process, "malloc", "Memory", "Amount of allocated memory");
/// profile.add_counter_sample(memory_counter, Timestamp::from_millis_since_reference(0.0), 0.0, 0);
/// profile.add_counter_sample(memory_counter, Timestamp::from_millis_since_reference(1.0), 1000.0, 2);
/// profile.add_counter_sample(memory_counter, Timestamp::from_millis_since_reference(2.0), 800.0, 1);
/// ```
pub fn add_counter(
&mut self,
process: ProcessHandle,
name: &str,
category: &str,
description: &str,
) -> CounterHandle {
let handle = CounterHandle(self.counters.len());
self.counters.push(Counter::new(
name,
category,
description,
process,
self.processes[process.0].pid(),
));
handle
}
/// Change the start time of a process.
pub fn set_process_start_time(&mut self, process: ProcessHandle, start_time: Timestamp) {
self.processes[process.0].set_start_time(start_time);
}
/// Set the end time of a process.
pub fn set_process_end_time(&mut self, process: ProcessHandle, end_time: Timestamp) {
self.processes[process.0].set_end_time(end_time);
}
/// Change the name of a process.
pub fn set_process_name(&mut self, process: ProcessHandle, name: &str) {
self.processes[process.0].set_name(name);
}
/// Get the [`LibraryHandle`] for a library. This handle is used in [`Profile::add_lib_mapping`]
/// and in the pre-resolved [`Frame`] variants.
///
/// Knowing the library information allows symbolication of native stacks once the
/// profile is opened in the Firefox Profiler.
pub fn add_lib(&mut self, library: LibraryInfo) -> LibraryHandle {
self.global_libs.handle_for_lib(library)
}
/// Set the symbol table for a library.
///
/// This symbol table can also be specified in the [`LibraryInfo`] which is given to
/// [`Profile::add_lib`]. However, sometimes you may want to have the [`LibraryHandle`]
/// for a library before you know about all its symbols. In those cases, you can call
/// [`Profile::add_lib`] with `symbol_table` set to `None`, and then supply the symbol
/// table afterwards.
///
/// Symbol tables are optional.
pub fn set_lib_symbol_table(&mut self, library: LibraryHandle, symbol_table: Arc<SymbolTable>) {
self.global_libs.set_lib_symbol_table(library, symbol_table);
}
/// For a given process, define where in the virtual memory of this process the given library
/// is mapped.
///
/// Existing mappings which overlap with the range `start_avma..end_avma` will be removed.
///
/// A single library can have multiple mappings in the same process.
///
/// The new mapping will be respected by future [`Profile::add_sample`] calls, when resolving
/// absolute frame addresses to library-relative addresses.
pub fn add_lib_mapping(
&mut self,
process: ProcessHandle,
lib: LibraryHandle,
start_avma: u64,
end_avma: u64,
relative_address_at_start: u32,
) {
self.processes[process.0].add_lib_mapping(
lib,
start_avma,
end_avma,
relative_address_at_start,
);
}
/// Mark the library mapping at the specified start address in the specified process as
/// unloaded, so that future calls to [`Profile::add_sample`] know about the removal.
pub fn remove_lib_mapping(&mut self, process: ProcessHandle, start_avma: u64) {
self.processes[process.0].remove_lib_mapping(start_avma);
}
/// Clear all library mappings in the specified process.
pub fn clear_process_lib_mappings(&mut self, process: ProcessHandle) {
self.processes[process.0].remove_all_lib_mappings();
}
/// Add a kernel library mapping. This allows symbolication of kernel stacks once the profile is
/// opened in the Firefox Profiler. Kernel libraries are global and not tied to a process.
///
/// Each kernel library covers an address range in the kernel address space, which is
/// global across all processes. Future calls to [`Profile::add_sample`] with native
/// frames resolve the frame's code address with respect to the currently loaded kernel
/// and process libraries.
pub fn add_kernel_lib_mapping(
&mut self,
lib: LibraryHandle,
start_avma: u64,
end_avma: u64,
relative_address_at_start: u32,
) {
self.kernel_libs
.add_mapping(start_avma, end_avma, relative_address_at_start, lib);
}
/// Mark the kernel library at the specified start address as
/// unloaded, so that future calls to [`Profile::add_sample`] know about the unloading.
pub fn remove_kernel_lib_mapping(&mut self, start_avma: u64) {
self.kernel_libs.remove_mapping(start_avma);
}
/// Add an empty thread to the specified process.
pub fn add_thread(
&mut self,
process: ProcessHandle,
tid: u32,
start_time: Timestamp,
is_main: bool,
) -> ThreadHandle {
let tid = self.make_unique_tid(tid);
let handle = ThreadHandle(self.threads.len());
self.threads
.push(Thread::new(process, tid, start_time, is_main));
self.processes[process.0].add_thread(handle);
handle
}
/// Change the name of a thread.
pub fn set_thread_name(&mut self, thread: ThreadHandle, name: &str) {
self.threads[thread.0].set_name(name);
}
/// Change the start time of a thread.
pub fn set_thread_start_time(&mut self, thread: ThreadHandle, start_time: Timestamp) {
self.threads[thread.0].set_start_time(start_time);
}
/// Set the end time of a thread.
pub fn set_thread_end_time(&mut self, thread: ThreadHandle, end_time: Timestamp) {
self.threads[thread.0].set_end_time(end_time);
}
/// Turn the string into in a [`StringHandle`], for use in [`Frame::Label`].
pub fn intern_string(&mut self, s: &str) -> StringHandle {
StringHandle(self.string_table.index_for_string(s))
}
/// Get the string for a string handle. This is sometimes useful when writing tests.
///
/// Panics if the handle wasn't found, which can happen if you pass a handle
/// from a different Profile instance.
pub fn get_string(&self, handle: StringHandle) -> &str {
self.string_table.get_string(handle.0).unwrap()
}
/// Add a sample to the given thread.
///
/// The sample has a timestamp, a stack, a CPU delta, and a weight.
///
/// The stack frames are supplied as an iterator. Every frame has an associated
/// category pair.
///
/// The CPU delta is the amount of CPU time that the CPU was busy with work for this
/// thread since the previous sample. It should always be less than or equal the
/// time delta between the sample timestamps.
///
/// The weight affects the sample's stack's score in the call tree. You usually set
/// this to 1. You can use weights greater than one if you want to combine multiple
/// adjacent samples with the same stack into one sample, to save space. However,
/// this discards any CPU deltas between the adjacent samples, so it's only really
/// useful if no CPU time has occurred between the samples, and for that use case the
/// [`Profile::add_sample_same_stack_zero_cpu`] method should be preferred.
///
/// You can can also set the weight to something negative, such as -1, to create a
/// "diff profile". For example, if you have partitioned your samples into "before"
/// and "after" groups, you can use -1 for all "before" samples and 1 for all "after"
/// samples, and the call tree will show you which stacks occur more frequently in
/// the "after" part of the profile, by sorting those stacks to the top.
pub fn add_sample(
&mut self,
thread: ThreadHandle,
timestamp: Timestamp,
frames: impl Iterator<Item = FrameInfo>,
cpu_delta: CpuDelta,
weight: i32,
) {
let stack_index = self.stack_index_for_frames(thread, frames);
self.threads[thread.0].add_sample(timestamp, stack_index, cpu_delta, weight);
}
/// Add a sample with a CPU delta of zero. Internally, multiple consecutive
/// samples with a delta of zero will be combined into one sample with an accumulated
/// weight.
pub fn add_sample_same_stack_zero_cpu(
&mut self,
thread: ThreadHandle,
timestamp: Timestamp,
weight: i32,
) {
self.threads[thread.0].add_sample_same_stack_zero_cpu(timestamp, weight);
}
/// Add an allocation or deallocation sample to the given thread. This is used
/// to collect stacks showing where allocations and deallocations happened.
///
/// When loading profiles with allocation samples in the Firefox Profiler, the
/// UI will display a dropdown above the call tree to switch between regular
/// samples and allocation samples.
///
/// An allocation sample has a timestamp, a stack, a memory address, and an allocation size.
///
/// The size should be in bytes, with positive values for allocations and negative
/// values for deallocations.
///
/// The memory address allows correlating the allocation and deallocation stacks of the
/// same object. This lets the UI display just the stacks for objects which haven't
/// been deallocated yet ("Retained memory").
///
/// To avoid having to capture stacks for every single allocation, you can sample just
/// a subset of allocations. The sampling should be done based on the allocation size
/// ("probability per byte"). The decision whether to sample should be done at
/// allocation time and remembered for the lifetime of the allocation, so that for
/// each allocated object you either sample both its allocation and deallocation, or
/// neither.
///
/// The stack frames are supplied as an iterator. Every frame has an associated
/// category pair.
pub fn add_allocation_sample(
&mut self,
thread: ThreadHandle,
timestamp: Timestamp,
frames: impl Iterator<Item = FrameInfo>,
allocation_address: u64,
allocation_size: i64,
) {
// The profile format strictly separates sample data from different threads.
// For allocation samples, this separation is a bit unfortunate, especially
// when it comes to the "Retained Memory" panel which shows allocation stacks
// for just objects that haven't been deallocated yet. This panel is per-thread,
// and it needs to know about deallocations even if they happened on a different
// thread from the allocation.
// To resolve this conundrum, for now, we will put all allocation and deallocation
// samples on a single thread per process, regardless of what thread they actually
// happened on.
// The Gecko profiler puts all allocation samples on the main thread, for example.
// Here in fxprof-processed-profile, we just deem the first thread of each process
// as the processes "allocation thread".
let process_handle = self.threads[thread.0].process();
let process = &self.processes[process_handle.0];
let allocation_thread_handle = process.thread_handle_for_allocations().unwrap();
let stack_index = self.stack_index_for_frames(allocation_thread_handle, frames);
self.threads[allocation_thread_handle.0].add_allocation_sample(
timestamp,
stack_index,
allocation_address,
allocation_size,
);
}
/// Add a marker to the given thread.
pub fn add_marker<T: ProfilerMarker>(
&mut self,
thread: ThreadHandle,
category: CategoryHandle,
name: &str,
marker: T,
timing: MarkerTiming,
) {
self.marker_schemas
.entry(T::MARKER_TYPE_NAME)
.or_insert_with(T::schema);
self.threads[thread.0].add_marker(category, name, marker, timing, None);
}
/// Add a marker to the given thread, with a stack.
pub fn add_marker_with_stack<T: ProfilerMarker>(
&mut self,
thread: ThreadHandle,
category: CategoryHandle,
name: &str,
marker: T,
timing: MarkerTiming,
stack_frames: impl Iterator<Item = FrameInfo>,
) {
self.marker_schemas
.entry(T::MARKER_TYPE_NAME)
.or_insert_with(T::schema);
let stack_index = self.stack_index_for_frames(thread, stack_frames);
self.threads[thread.0].add_marker(category, name, marker, timing, stack_index);
}
/// Add a data point to a counter. For a memory counter, `value_delta` is the number
/// of bytes that have been allocated / deallocated since the previous counter sample, and
/// `number_of_operations` is the number of `malloc` / `free` calls since the previous
/// counter sample. Both numbers are deltas.
///
/// The graph in the profiler UI will connect subsequent data points with diagonal lines.
/// Counters are intended for values that are measured at a time-based sample rate; for example,
/// you could add a counter sample once every millisecond with the current memory usage.
///
/// Alternatively, you can emit a new data point only whenever the value changes.
/// In that case you probably want to emit two values per change: one right before (with
/// the old value) and one right at the timestamp of change (with the new value). This way
/// you'll get more horizontal lines, and the diagonal line will be very short.
pub fn add_counter_sample(
&mut self,
counter: CounterHandle,
timestamp: Timestamp,
value_delta: f64,
number_of_operations_delta: u32,
) {
self.counters[counter.0].add_sample(timestamp, value_delta, number_of_operations_delta)
}
// frames is ordered from caller to callee, i.e. root function first, pc last
fn stack_index_for_frames(
&mut self,
thread: ThreadHandle,
frames: impl Iterator<Item = FrameInfo>,
) -> Option<usize> {
let thread = &mut self.threads[thread.0];
let process = &mut self.processes[thread.process().0];
let mut prefix = None;
for frame_info in frames {
let location = match frame_info.frame {
Frame::InstructionPointer(ip) => {
process.convert_address(&mut self.global_libs, &mut self.kernel_libs, ip)
}
Frame::ReturnAddress(ra) => process.convert_address(
&mut self.global_libs,
&mut self.kernel_libs,
ra.saturating_sub(1),
),
Frame::RelativeAddressFromInstructionPointer(lib_handle, relative_address) => {
let global_lib_index = self.global_libs.index_for_used_lib(lib_handle);
InternalFrameLocation::AddressInLib(relative_address, global_lib_index)
}
Frame::RelativeAddressFromReturnAddress(lib_handle, relative_address) => {
let global_lib_index = self.global_libs.index_for_used_lib(lib_handle);
let nudged_relative_address = relative_address.saturating_sub(1);
InternalFrameLocation::AddressInLib(nudged_relative_address, global_lib_index)
}
Frame::Label(string_index) => {
let thread_string_index =
thread.convert_string_index(&self.string_table, string_index.0);
InternalFrameLocation::Label(thread_string_index)
}
};
let internal_frame = InternalFrame {
location,
flags: frame_info.flags,
category_pair: frame_info.category_pair,
};
let frame_index = thread.frame_index_for_frame(internal_frame, &self.global_libs);
prefix =
Some(thread.stack_index_for_stack(prefix, frame_index, frame_info.category_pair));
}
prefix
}
/// Returns a flattened list of `ThreadHandle`s in the right order.
///
// The processed profile format has all threads from all processes in a flattened threads list.
// Each thread duplicates some information about its process, which allows the Firefox Profiler
// UI to group threads from the same process.
fn sorted_threads(&self) -> (Vec<ThreadHandle>, Vec<usize>) {
let mut sorted_threads = Vec::with_capacity(self.threads.len());
let mut first_thread_index_per_process = vec![0; self.processes.len()];
let mut sorted_processes: Vec<_> = (0..self.processes.len()).map(ProcessHandle).collect();
sorted_processes.sort_by(|a_handle, b_handle| {
let a = &self.processes[a_handle.0];
let b = &self.processes[b_handle.0];
a.cmp_for_json_order(b)
});
for process in sorted_processes {
let prev_len = sorted_threads.len();
first_thread_index_per_process[process.0] = prev_len;
sorted_threads.extend_from_slice(self.processes[process.0].threads());
let sorted_threads_for_this_process = &mut sorted_threads[prev_len..];
sorted_threads_for_this_process.sort_by(|a_handle, b_handle| {
let a = &self.threads[a_handle.0];
let b = &self.threads[b_handle.0];
a.cmp_for_json_order(b)
});
}
(sorted_threads, first_thread_index_per_process)
}
fn serializable_threads<'a>(
&'a self,
sorted_threads: &'a [ThreadHandle],
) -> SerializableProfileThreadsProperty<'a> {
SerializableProfileThreadsProperty {
threads: &self.threads,
processes: &self.processes,
categories: &self.categories,
sorted_threads,
}
}
fn serializable_counters<'a>(
&'a self,
first_thread_index_per_process: &'a [usize],
) -> SerializableProfileCountersProperty<'a> {
SerializableProfileCountersProperty {
counters: &self.counters,
first_thread_index_per_process,
}
}
fn contains_js_function(&self) -> bool {
self.threads.iter().any(|t| t.contains_js_function())
}
}
impl Serialize for Profile {
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
let (sorted_threads, first_thread_index_per_process) = self.sorted_threads();
let mut map = serializer.serialize_map(None)?;
map.serialize_entry("meta", &SerializableProfileMeta(self))?;
map.serialize_entry("libs", &self.global_libs)?;
map.serialize_entry("threads", &self.serializable_threads(&sorted_threads))?;
map.serialize_entry("pages", &[] as &[()])?;
map.serialize_entry("profilerOverhead", &[] as &[()])?;
map.serialize_entry(
"counters",
&self.serializable_counters(&first_thread_index_per_process),
)?;
map.end()
}
}
struct SerializableProfileMeta<'a>(&'a Profile);
impl<'a> Serialize for SerializableProfileMeta<'a> {
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
let mut map = serializer.serialize_map(None)?;
map.serialize_entry("categories", &self.0.categories)?;
map.serialize_entry("debug", &false)?;
map.serialize_entry(
"extensions",
&json!({
"length": 0,
"baseURL": [],
"id": [],
"name": [],
}),
)?;
map.serialize_entry("interval", &(self.0.interval.as_secs_f64() * 1000.0))?;
map.serialize_entry("preprocessedProfileVersion", &46)?;
map.serialize_entry("processType", &0)?;
map.serialize_entry("product", &self.0.product)?;
map.serialize_entry(
"sampleUnits",
&json!({
"time": "ms",
"eventDelay": "ms",
"threadCPUDelta": "µs",
}),
)?;
map.serialize_entry("startTime", &self.0.reference_timestamp)?;
map.serialize_entry("symbolicated", &false)?;
map.serialize_entry("pausedRanges", &[] as &[()])?;
map.serialize_entry("version", &24)?;
map.serialize_entry("usesOnlyOneStackType", &(!self.0.contains_js_function()))?;
map.serialize_entry("doesNotUseFrameImplementation", &true)?;
map.serialize_entry("sourceCodeIsNotOnSearchfox", &true)?;
let mut marker_schemas: Vec<MarkerSchema> =
self.0.marker_schemas.values().cloned().collect();
marker_schemas.sort_by_key(|schema| schema.type_name);
map.serialize_entry("markerSchema", &marker_schemas)?;
map.end()
}
}
struct SerializableProfileThreadsProperty<'a> {
threads: &'a [Thread],
processes: &'a [Process],
categories: &'a [Category],
sorted_threads: &'a [ThreadHandle],
}
impl<'a> Serialize for SerializableProfileThreadsProperty<'a> {
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
let mut seq = serializer.serialize_seq(Some(self.threads.len()))?;
for thread in self.sorted_threads {
let categories = &self.categories;
let thread = &self.threads[thread.0];
let process = &self.processes[thread.process().0];
seq.serialize_element(&SerializableProfileThread(process, thread, categories))?;
}
seq.end()
}
}
struct SerializableProfileCountersProperty<'a> {
counters: &'a [Counter],
first_thread_index_per_process: &'a [usize],
}
impl<'a> Serialize for SerializableProfileCountersProperty<'a> {
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
let mut seq = serializer.serialize_seq(Some(self.counters.len()))?;
for counter in self.counters {
let main_thread_index = self.first_thread_index_per_process[counter.process().0];
seq.serialize_element(&counter.as_serializable(main_thread_index))?;
}
seq.end()
}
}
struct SerializableProfileThread<'a>(&'a Process, &'a Thread, &'a [Category]);
impl<'a> Serialize for SerializableProfileThread<'a> {
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
let SerializableProfileThread(process, thread, categories) = self;
let process_start_time = process.start_time();
let process_end_time = process.end_time();
let process_name = process.name();
let pid = process.pid();
thread.serialize_with(
serializer,
categories,
process_start_time,
process_end_time,
process_name,
pid,
)
}
}