fxprof_processed_profile/
profile.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
use std::collections::hash_map::Entry;
use std::sync::Arc;
use std::time::Duration;

use serde::ser::{Serialize, SerializeMap, SerializeSeq, Serializer};
use serde_json::json;

use crate::category::{Category, CategoryHandle, CategoryPairHandle};
use crate::category_color::CategoryColor;
use crate::counters::{Counter, CounterHandle};
use crate::cpu_delta::CpuDelta;
use crate::fast_hash_map::FastHashMap;
use crate::frame::{Frame, FrameInfo};
use crate::frame_table::{InternalFrame, InternalFrameLocation};
use crate::global_lib_table::{GlobalLibTable, LibraryHandle, UsedLibraryAddressesIterator};
use crate::lib_mappings::LibMappings;
use crate::library_info::{LibraryInfo, SymbolTable};
use crate::markers::{
    GraphColor, InternalMarkerSchema, Marker, MarkerHandle, MarkerTiming, MarkerTypeHandle,
    RuntimeSchemaMarkerSchema, StaticSchemaMarker,
};
use crate::process::{Process, ThreadHandle};
use crate::reference_timestamp::ReferenceTimestamp;
use crate::sample_table::WeightType;
use crate::string_table::{GlobalStringIndex, GlobalStringTable};
use crate::thread::{ProcessHandle, Thread};
use crate::timestamp::Timestamp;

/// The sampling interval used during profile recording.
///
/// This doesn't have to match the actual delta between sample timestamps.
/// It just describes the intended interval.
///
/// For profiles without sampling data, this can be set to a meaningless
/// dummy value.
#[derive(Debug, Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct SamplingInterval {
    nanos: u64,
}

impl SamplingInterval {
    /// Create a sampling interval from a sampling frequency in Hz.
    ///
    /// Panics on zero or negative values.
    pub fn from_hz(samples_per_second: f32) -> Self {
        assert!(samples_per_second > 0.0);
        let nanos = (1_000_000_000.0 / samples_per_second) as u64;
        Self::from_nanos(nanos)
    }

    /// Create a sampling interval from a value in milliseconds.
    pub fn from_millis(millis: u64) -> Self {
        Self::from_nanos(millis * 1_000_000)
    }

    /// Create a sampling interval from a value in nanoseconds
    pub fn from_nanos(nanos: u64) -> Self {
        Self { nanos }
    }

    /// Convert the interval to nanoseconds.
    pub fn nanos(&self) -> u64 {
        self.nanos
    }

    /// Convert the interval to float seconds.
    pub fn as_secs_f64(&self) -> f64 {
        self.nanos as f64 / 1_000_000_000.0
    }
}

impl From<Duration> for SamplingInterval {
    fn from(duration: Duration) -> Self {
        Self::from_nanos(duration.as_nanos() as u64)
    }
}

/// A handle for an interned string, returned from [`Profile::intern_string`].
#[derive(Debug, Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct StringHandle(pub(crate) GlobalStringIndex);

/// A handle to a frame, specific to a thread. Can be created with [`Profile::intern_frame`](crate::Profile::intern_frame).
#[derive(Debug, Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct FrameHandle(ThreadHandle, usize);

/// A handle to a stack, specific to a thread. Can be created with [`Profile::intern_stack`](crate::Profile::intern_stack).
#[derive(Debug, Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct StackHandle(ThreadHandle, usize);

/// Stores the profile data and can be serialized as JSON, via [`serde::Serialize`].
///
/// The profile data is organized into a list of processes with threads.
/// Each thread has its own samples and markers.
///
/// ```
/// use fxprof_processed_profile::{Profile, CategoryHandle, CpuDelta, Frame, FrameInfo, FrameFlags, SamplingInterval, Timestamp};
/// use std::time::SystemTime;
///
/// # fn write_profile(output_file: std::fs::File) -> Result<(), Box<dyn std::error::Error>> {
/// let mut profile = Profile::new("My app", SystemTime::now().into(), SamplingInterval::from_millis(1));
/// let process = profile.add_process("App process", 54132, Timestamp::from_millis_since_reference(0.0));
/// let thread = profile.add_thread(process, 54132000, Timestamp::from_millis_since_reference(0.0), true);
/// profile.set_thread_name(thread, "Main thread");
/// let stack_frames = vec![
///     FrameInfo { frame: Frame::Label(profile.intern_string("Root node")), category_pair: CategoryHandle::OTHER.into(), flags: FrameFlags::empty() },
///     FrameInfo { frame: Frame::Label(profile.intern_string("First callee")), category_pair: CategoryHandle::OTHER.into(), flags: FrameFlags::empty() }
/// ];
/// let stack = profile.intern_stack_frames(thread, stack_frames.into_iter());
/// profile.add_sample(thread, Timestamp::from_millis_since_reference(0.0), stack, CpuDelta::ZERO, 1);
///
/// let writer = std::io::BufWriter::new(output_file);
/// serde_json::to_writer(writer, &profile)?;
/// # Ok(())
/// # }
/// ```
#[derive(Debug)]
pub struct Profile {
    pub(crate) product: String,
    pub(crate) os_name: Option<String>,
    pub(crate) interval: SamplingInterval,
    pub(crate) global_libs: GlobalLibTable,
    pub(crate) kernel_libs: LibMappings<LibraryHandle>,
    pub(crate) categories: Vec<Category>, // append-only for stable CategoryHandles
    pub(crate) processes: Vec<Process>,   // append-only for stable ProcessHandles
    pub(crate) counters: Vec<Counter>,
    pub(crate) threads: Vec<Thread>, // append-only for stable ThreadHandles
    pub(crate) initial_visible_threads: Vec<ThreadHandle>,
    pub(crate) initial_selected_threads: Vec<ThreadHandle>,
    pub(crate) reference_timestamp: ReferenceTimestamp,
    pub(crate) string_table: GlobalStringTable,
    pub(crate) marker_schemas: Vec<InternalMarkerSchema>,
    static_schema_marker_types: FastHashMap<&'static str, MarkerTypeHandle>,
    pub(crate) symbolicated: bool,
    used_pids: FastHashMap<u32, u32>,
    used_tids: FastHashMap<u32, u32>,
}

impl Profile {
    /// Create a new profile.
    ///
    /// The `product` is the name of the main application which was profiled.
    /// The `reference_timestamp` is some arbitrary absolute timestamp which all
    /// other timestamps in the profile data are relative to. The `interval` is the intended
    /// time delta between samples.
    pub fn new(
        product: &str,
        reference_timestamp: ReferenceTimestamp,
        interval: SamplingInterval,
    ) -> Self {
        Profile {
            interval,
            product: product.to_string(),
            os_name: None,
            threads: Vec::new(),
            initial_visible_threads: Vec::new(),
            initial_selected_threads: Vec::new(),
            global_libs: GlobalLibTable::new(),
            kernel_libs: LibMappings::new(),
            reference_timestamp,
            processes: Vec::new(),
            string_table: GlobalStringTable::new(),
            marker_schemas: Vec::new(),
            categories: vec![Category {
                name: "Other".to_string(),
                color: CategoryColor::Gray,
                subcategories: Vec::new(),
            }],
            static_schema_marker_types: FastHashMap::default(),
            symbolicated: false,
            used_pids: FastHashMap::default(),
            used_tids: FastHashMap::default(),
            counters: Vec::new(),
        }
    }

    /// Change the declared sampling interval.
    pub fn set_interval(&mut self, interval: SamplingInterval) {
        self.interval = interval;
    }

    /// Change the reference timestamp.
    pub fn set_reference_timestamp(&mut self, reference_timestamp: ReferenceTimestamp) {
        self.reference_timestamp = reference_timestamp;
    }

    /// Change the product name.
    pub fn set_product(&mut self, product: &str) {
        self.product = product.to_string();
    }

    /// Set the name of the operating system.
    pub fn set_os_name(&mut self, os_name: &str) {
        self.os_name = Some(os_name.to_string());
    }

    /// Add a category and return its handle.
    ///
    /// Categories are used for stack frames and markers, as part of a "category pair".
    pub fn add_category(&mut self, name: &str, color: CategoryColor) -> CategoryHandle {
        let handle = CategoryHandle(self.categories.len() as u16);
        self.categories.push(Category {
            name: name.to_string(),
            color,
            subcategories: Vec::new(),
        });
        handle
    }

    /// Add a subcategory for a category, and return the "category pair" handle.
    ///
    /// Every category has a default subcategory; you can convert a `Category` into
    /// its corresponding `CategoryPairHandle` for the default category using `category.into()`.
    pub fn add_subcategory(&mut self, category: CategoryHandle, name: &str) -> CategoryPairHandle {
        let subcategory = self.categories[category.0 as usize].add_subcategory(name.into());
        CategoryPairHandle(category, Some(subcategory))
    }

    /// Add an empty process. The name, pid and start time can be changed afterwards,
    /// but they are required here because they have to be present in the profile JSON.
    pub fn add_process(&mut self, name: &str, pid: u32, start_time: Timestamp) -> ProcessHandle {
        let pid = self.make_unique_pid(pid);
        let handle = ProcessHandle(self.processes.len());
        self.processes.push(Process::new(name, pid, start_time));
        handle
    }

    fn make_unique_pid(&mut self, pid: u32) -> String {
        Self::make_unique_pid_or_tid(&mut self.used_pids, pid)
    }

    fn make_unique_tid(&mut self, tid: u32) -> String {
        Self::make_unique_pid_or_tid(&mut self.used_tids, tid)
    }

    /// Appends ".1" / ".2" etc. to the pid or tid if needed.
    ///
    /// The map contains the next suffix for each pid/tid, or no entry if the pid/tid
    /// hasn't been used before and needs no suffix.
    fn make_unique_pid_or_tid(map: &mut FastHashMap<u32, u32>, id: u32) -> String {
        match map.entry(id) {
            std::collections::hash_map::Entry::Occupied(mut entry) => {
                let suffix = *entry.get();
                *entry.get_mut() += 1;
                format!("{id}.{suffix}")
            }
            std::collections::hash_map::Entry::Vacant(entry) => {
                entry.insert(1);
                format!("{id}")
            }
        }
    }

    /// Create a counter. Counters let you make graphs with a time axis and a Y axis. One example of a
    /// counter is memory usage.
    ///
    /// # Example
    ///
    /// ```
    /// use fxprof_processed_profile::{Profile, CategoryHandle, CpuDelta, Frame, SamplingInterval, Timestamp};
    /// use std::time::SystemTime;
    ///
    /// let mut profile = Profile::new("My app", SystemTime::now().into(), SamplingInterval::from_millis(1));
    /// let process = profile.add_process("App process", 54132, Timestamp::from_millis_since_reference(0.0));
    /// let memory_counter = profile.add_counter(process, "malloc", "Memory", "Amount of allocated memory");
    /// profile.add_counter_sample(memory_counter, Timestamp::from_millis_since_reference(0.0), 0.0, 0);
    /// profile.add_counter_sample(memory_counter, Timestamp::from_millis_since_reference(1.0), 1000.0, 2);
    /// profile.add_counter_sample(memory_counter, Timestamp::from_millis_since_reference(2.0), 800.0, 1);
    /// ```
    pub fn add_counter(
        &mut self,
        process: ProcessHandle,
        name: &str,
        category: &str,
        description: &str,
    ) -> CounterHandle {
        let handle = CounterHandle(self.counters.len());
        self.counters.push(Counter::new(
            name,
            category,
            description,
            process,
            self.processes[process.0].pid(),
        ));
        handle
    }

    /// Set the color to use when rendering the counter.
    pub fn set_counter_color(&mut self, counter: CounterHandle, color: GraphColor) {
        self.counters[counter.0].set_color(color);
    }

    /// Change the start time of a process.
    pub fn set_process_start_time(&mut self, process: ProcessHandle, start_time: Timestamp) {
        self.processes[process.0].set_start_time(start_time);
    }

    /// Set the end time of a process.
    pub fn set_process_end_time(&mut self, process: ProcessHandle, end_time: Timestamp) {
        self.processes[process.0].set_end_time(end_time);
    }

    /// Change the name of a process.
    pub fn set_process_name(&mut self, process: ProcessHandle, name: &str) {
        self.processes[process.0].set_name(name);
    }

    /// Get the [`LibraryHandle`] for a library. This handle is used in [`Profile::add_lib_mapping`]
    /// and in the pre-resolved [`Frame`] variants.
    ///
    /// Knowing the library information allows symbolication of native stacks once the
    /// profile is opened in the Firefox Profiler.
    pub fn add_lib(&mut self, library: LibraryInfo) -> LibraryHandle {
        self.global_libs.handle_for_lib(library)
    }

    /// Set the symbol table for a library.
    ///
    /// This symbol table can also be specified in the [`LibraryInfo`] which is given to
    /// [`Profile::add_lib`]. However, sometimes you may want to have the [`LibraryHandle`]
    /// for a library before you know about all its symbols. In those cases, you can call
    /// [`Profile::add_lib`] with `symbol_table` set to `None`, and then supply the symbol
    /// table afterwards.
    ///
    /// Symbol tables are optional.
    pub fn set_lib_symbol_table(&mut self, library: LibraryHandle, symbol_table: Arc<SymbolTable>) {
        self.global_libs.set_lib_symbol_table(library, symbol_table);
    }

    /// For a given process, define where in the virtual memory of this process the given library
    /// is mapped.
    ///
    /// Existing mappings which overlap with the range `start_avma..end_avma` will be removed.
    ///
    /// A single library can have multiple mappings in the same process.
    ///
    /// The new mapping will be respected by future [`Profile::add_sample`] calls, when resolving
    /// absolute frame addresses to library-relative addresses.
    pub fn add_lib_mapping(
        &mut self,
        process: ProcessHandle,
        lib: LibraryHandle,
        start_avma: u64,
        end_avma: u64,
        relative_address_at_start: u32,
    ) {
        self.processes[process.0].add_lib_mapping(
            lib,
            start_avma,
            end_avma,
            relative_address_at_start,
        );
    }

    /// Mark the library mapping at the specified start address in the specified process as
    /// unloaded, so that future calls to [`Profile::add_sample`] know about the removal.
    pub fn remove_lib_mapping(&mut self, process: ProcessHandle, start_avma: u64) {
        self.processes[process.0].remove_lib_mapping(start_avma);
    }

    /// Clear all library mappings in the specified process.
    pub fn clear_process_lib_mappings(&mut self, process: ProcessHandle) {
        self.processes[process.0].remove_all_lib_mappings();
    }

    /// Add a kernel library mapping. This allows symbolication of kernel stacks once the profile is
    /// opened in the Firefox Profiler. Kernel libraries are global and not tied to a process.
    ///
    /// Each kernel library covers an address range in the kernel address space, which is
    /// global across all processes. Future calls to [`Profile::add_sample`] with native
    /// frames resolve the frame's code address with respect to the currently loaded kernel
    /// and process libraries.
    pub fn add_kernel_lib_mapping(
        &mut self,
        lib: LibraryHandle,
        start_avma: u64,
        end_avma: u64,
        relative_address_at_start: u32,
    ) {
        self.kernel_libs
            .add_mapping(start_avma, end_avma, relative_address_at_start, lib);
    }

    /// Mark the kernel library at the specified start address as
    /// unloaded, so that future calls to [`Profile::add_sample`] know about the unloading.
    pub fn remove_kernel_lib_mapping(&mut self, start_avma: u64) {
        self.kernel_libs.remove_mapping(start_avma);
    }

    /// Add an empty thread to the specified process.
    pub fn add_thread(
        &mut self,
        process: ProcessHandle,
        tid: u32,
        start_time: Timestamp,
        is_main: bool,
    ) -> ThreadHandle {
        let tid = self.make_unique_tid(tid);
        let handle = ThreadHandle(self.threads.len());
        self.threads
            .push(Thread::new(process, tid, start_time, is_main));
        self.processes[process.0].add_thread(handle);
        handle
    }

    /// Change the name of a thread.
    pub fn set_thread_name(&mut self, thread: ThreadHandle, name: &str) {
        self.threads[thread.0].set_name(name);
    }

    /// Change the start time of a thread.
    pub fn set_thread_start_time(&mut self, thread: ThreadHandle, start_time: Timestamp) {
        self.threads[thread.0].set_start_time(start_time);
    }

    /// Set the end time of a thread.
    pub fn set_thread_end_time(&mut self, thread: ThreadHandle, end_time: Timestamp) {
        self.threads[thread.0].set_end_time(end_time);
    }

    /// Set the tid (thread ID) of a thread.
    pub fn set_thread_tid(&mut self, thread: ThreadHandle, tid: u32) {
        let tid = self.make_unique_tid(tid);
        self.threads[thread.0].set_tid(tid);
    }

    /// Set whether to show a timeline which displays [`MarkerLocations::TIMELINE_OVERVIEW`](crate::MarkerLocations::TIMELINE_OVERVIEW)
    /// markers for this thread.
    ///
    /// Main threads always have such a timeline view and always display such markers,
    /// but non-main threads only do so when specified using this method.
    pub fn set_thread_show_markers_in_timeline(&mut self, thread: ThreadHandle, v: bool) {
        self.threads[thread.0].set_show_markers_in_timeline(v);
    }

    /// Set the weighting type of samples of a thread.
    ///
    /// Default is [WeightType::Samples].
    pub fn set_thread_samples_weight_type(&mut self, thread: ThreadHandle, t: WeightType) {
        self.threads[thread.0].set_samples_weight_type(t);
    }

    /// Add a thread as initially visible in the UI.
    ///
    /// If not called, the UI uses its own ranking heuristic to choose which
    /// threads are visible.
    pub fn add_initial_visible_thread(&mut self, thread: ThreadHandle) {
        self.initial_visible_threads.push(thread);
    }

    /// Clear the list of threads marked as initially visible in the UI.
    pub fn clear_initial_visible_threads(&mut self) {
        self.initial_visible_threads.clear();
    }

    /// Add a thread as initially selected in the UI.
    ///
    /// If not called, the UI uses its own heuristic to choose which threads
    /// are initially selected.
    pub fn add_initial_selected_thread(&mut self, thread: ThreadHandle) {
        self.initial_selected_threads.push(thread);
    }

    /// Clear the list of threads marked as initially selected in the UI.
    pub fn clear_initial_selected_threads(&mut self) {
        self.initial_selected_threads.clear();
    }

    /// Turn the string into in a [`StringHandle`], for use in [`Frame::Label`].
    pub fn intern_string(&mut self, s: &str) -> StringHandle {
        StringHandle(self.string_table.index_for_string(s))
    }

    /// Get the string for a string handle. This is sometimes useful when writing tests.
    ///
    /// Panics if the handle wasn't found, which can happen if you pass a handle
    /// from a different Profile instance.
    pub fn get_string(&self, handle: StringHandle) -> &str {
        self.string_table.get_string(handle.0).unwrap()
    }

    /// Get the frame handle for a stack frame.
    ///
    /// The returned handle can only be used with this thread.
    pub fn intern_frame(&mut self, thread: ThreadHandle, frame_info: FrameInfo) -> FrameHandle {
        let thread_handle = thread;
        let thread = &mut self.threads[thread.0];
        let process = &mut self.processes[thread.process().0];
        let frame_index = Self::intern_frame_internal(
            thread,
            process,
            frame_info,
            &mut self.global_libs,
            &mut self.kernel_libs,
            &self.string_table,
        );
        FrameHandle(thread_handle, frame_index)
    }

    /// Get the stack handle for a stack with the given `frame` and `parent`,
    /// for the given thread.
    ///
    /// The returned stack handle can be used with [`Profile::add_sample`] and
    /// [`Profile::set_marker_stack`], but only for samples / markers of the same
    /// thread.
    ///
    /// If `parent` is `None`, this creates a root stack node. Otherwise, `parent`
    /// is the caller of the returned stack node.
    pub fn intern_stack(
        &mut self,
        thread: ThreadHandle,
        parent: Option<StackHandle>,
        frame: FrameHandle,
    ) -> StackHandle {
        let thread_handle = thread;
        let prefix = match parent {
            Some(StackHandle(parent_thread_handle, prefix_stack_index)) => {
                assert_eq!(
                    parent_thread_handle, thread_handle,
                    "StackHandle from different thread passed to Profile::intern_stack"
                );
                Some(prefix_stack_index)
            }
            None => None,
        };
        let FrameHandle(frame_thread_handle, frame_index) = frame;
        assert_eq!(
            frame_thread_handle, thread_handle,
            "FrameHandle from different thread passed to Profile::intern_stack"
        );
        let thread = &mut self.threads[thread.0];
        let category_pair = thread.get_frame_category(frame_index);
        let stack_index = thread.stack_index_for_stack(prefix, frame_index, category_pair);
        StackHandle(thread_handle, stack_index)
    }

    /// Get the stack handle for a stack whose frames are given by an iterator.
    ///
    /// The stack frames yielded by the iterator need to be ordered from caller-most
    /// to callee-most.
    ///
    /// Returns `None` if the stack has zero frames.
    pub fn intern_stack_frames(
        &mut self,
        thread: ThreadHandle,
        frames: impl Iterator<Item = FrameInfo>,
    ) -> Option<StackHandle> {
        let stack_index = self.stack_index_for_frames(thread, frames)?;
        Some(StackHandle(thread, stack_index))
    }

    /// Add a sample to the given thread.
    ///
    /// The sample has a timestamp, a stack, a CPU delta, and a weight.
    ///
    /// To get the stack handle, you can use [`Profile::intern_stack`] or
    /// [`Profile::intern_stack_frames`].
    ///
    /// The CPU delta is the amount of CPU time that the CPU was busy with work for this
    /// thread since the previous sample. It should always be less than or equal the
    /// time delta between the sample timestamps.
    ///
    /// The weight affects the sample's stack's score in the call tree. You usually set
    /// this to 1. You can use weights greater than one if you want to combine multiple
    /// adjacent samples with the same stack into one sample, to save space. However,
    /// this discards any CPU deltas between the adjacent samples, so it's only really
    /// useful if no CPU time has occurred between the samples, and for that use case the
    /// [`Profile::add_sample_same_stack_zero_cpu`] method should be preferred.
    ///
    /// You can can also set the weight to something negative, such as -1, to create a
    /// "diff profile". For example, if you have partitioned your samples into "before"
    /// and "after" groups, you can use -1 for all "before" samples and 1 for all "after"
    /// samples, and the call tree will show you which stacks occur more frequently in
    /// the "after" part of the profile, by sorting those stacks to the top.
    pub fn add_sample(
        &mut self,
        thread: ThreadHandle,
        timestamp: Timestamp,
        stack: Option<StackHandle>,
        cpu_delta: CpuDelta,
        weight: i32,
    ) {
        let stack_index = match stack {
            Some(StackHandle(stack_thread_handle, stack_index)) => {
                assert_eq!(
                    stack_thread_handle, thread,
                    "StackHandle from different thread passed to Profile::add_sample"
                );
                Some(stack_index)
            }
            None => None,
        };
        self.threads[thread.0].add_sample(timestamp, stack_index, cpu_delta, weight);
    }

    /// Add a sample with a CPU delta of zero. Internally, multiple consecutive
    /// samples with a delta of zero will be combined into one sample with an accumulated
    /// weight.
    pub fn add_sample_same_stack_zero_cpu(
        &mut self,
        thread: ThreadHandle,
        timestamp: Timestamp,
        weight: i32,
    ) {
        self.threads[thread.0].add_sample_same_stack_zero_cpu(timestamp, weight);
    }

    /// Add an allocation or deallocation sample to the given thread. This is used
    /// to collect stacks showing where allocations and deallocations happened.
    ///
    /// When loading profiles with allocation samples in the Firefox Profiler, the
    /// UI will display a dropdown above the call tree to switch between regular
    /// samples and allocation samples.
    ///
    /// An allocation sample has a timestamp, a stack, a memory address, and an allocation size.
    ///
    /// The size should be in bytes, with positive values for allocations and negative
    /// values for deallocations.
    ///
    /// The memory address allows correlating the allocation and deallocation stacks of the
    /// same object. This lets the UI display just the stacks for objects which haven't
    /// been deallocated yet ("Retained memory").
    ///
    /// To avoid having to capture stacks for every single allocation, you can sample just
    /// a subset of allocations. The sampling should be done based on the allocation size
    /// ("probability per byte"). The decision whether to sample should be done at
    /// allocation time and remembered for the lifetime of the allocation, so that for
    /// each allocated object you either sample both its allocation and deallocation, or
    /// neither.
    ///
    /// To get the stack handle, you can use [`Profile::intern_stack`] or
    /// [`Profile::intern_stack_frames`].
    pub fn add_allocation_sample(
        &mut self,
        thread: ThreadHandle,
        timestamp: Timestamp,
        stack: Option<StackHandle>,
        allocation_address: u64,
        allocation_size: i64,
    ) {
        // The profile format strictly separates sample data from different threads.
        // For allocation samples, this separation is a bit unfortunate, especially
        // when it comes to the "Retained Memory" panel which shows allocation stacks
        // for just objects that haven't been deallocated yet. This panel is per-thread,
        // and it needs to know about deallocations even if they happened on a different
        // thread from the allocation.
        // To resolve this conundrum, for now, we will put all allocation and deallocation
        // samples on a single thread per process, regardless of what thread they actually
        // happened on.
        // The Gecko profiler puts all allocation samples on the main thread, for example.
        // Here in fxprof-processed-profile, we just deem the first thread of each process
        // as the processes "allocation thread".
        let process_handle = self.threads[thread.0].process();
        let process = &self.processes[process_handle.0];
        let allocation_thread_handle = process.thread_handle_for_allocations().unwrap();
        let stack_index = match stack {
            Some(StackHandle(stack_thread_handle, stack_index)) => {
                assert_eq!(
                    stack_thread_handle, thread,
                    "StackHandle from different thread passed to Profile::add_sample"
                );
                Some(stack_index)
            }
            None => None,
        };
        self.threads[allocation_thread_handle.0].add_allocation_sample(
            timestamp,
            stack_index,
            allocation_address,
            allocation_size,
        );
    }

    /// Registers a marker type for a [`RuntimeSchemaMarkerSchema`]. You only need to call this for
    /// marker types whose schema is dynamically created at runtime.
    ///
    /// After you register the marker type, you'll save its [`MarkerTypeHandle`] somewhere, and then
    /// store it in every marker you create of this type. The marker then needs to return the
    /// handle from its implementation of [`Marker::marker_type`].
    ///
    /// For marker types whose schema is known at compile time, you'll want to implement
    /// [`StaticSchemaMarker`] instead, and you don't need to call this method.
    pub fn register_marker_type(&mut self, schema: RuntimeSchemaMarkerSchema) -> MarkerTypeHandle {
        let handle = MarkerTypeHandle(self.marker_schemas.len());
        self.marker_schemas.push(schema.into());
        handle
    }

    /// Returns the marker type handle for a type that implements [`StaticSchemaMarker`].
    ///
    /// You usually don't need to call this, ever. It is called by the blanket impl
    /// of [`Marker::marker_type`] for all types which implement [`StaticSchemaMarker`].
    pub fn static_schema_marker_type<T: StaticSchemaMarker>(&mut self) -> MarkerTypeHandle {
        match self
            .static_schema_marker_types
            .entry(T::UNIQUE_MARKER_TYPE_NAME)
        {
            Entry::Occupied(entry) => *entry.get(),
            Entry::Vacant(entry) => {
                let handle = MarkerTypeHandle(self.marker_schemas.len());
                let schema = InternalMarkerSchema::from_static_schema::<T>();
                self.marker_schemas.push(schema);
                entry.insert(handle);
                handle
            }
        }
    }

    /// Add a marker to the given thread.
    ///
    /// The marker handle that's returned by this method can be used in [`Profile::set_marker_stack`].
    ///
    /// ```
    /// use fxprof_processed_profile::{
    ///     Profile, CategoryHandle, Marker, MarkerFieldFlags, MarkerFieldFormat, MarkerTiming,
    ///     StaticSchemaMarker, StaticSchemaMarkerField, StringHandle, ThreadHandle, Timestamp,
    /// };
    ///
    /// # fn fun() {
    /// # let profile: Profile = panic!();
    /// # let thread: ThreadHandle = panic!();
    /// # let start_time: Timestamp = panic!();
    /// # let end_time: Timestamp = panic!();
    /// let name = profile.intern_string("Marker name");
    /// let text = profile.intern_string("Marker text");
    /// let my_marker = TextMarker { name, text };
    /// profile.add_marker(thread, MarkerTiming::Interval(start_time, end_time), my_marker);
    /// # }
    ///
    /// #[derive(Debug, Clone)]
    /// pub struct TextMarker {
    ///   pub name: StringHandle,
    ///   pub text: StringHandle,
    /// }
    ///
    /// impl StaticSchemaMarker for TextMarker {
    ///     const UNIQUE_MARKER_TYPE_NAME: &'static str = "Text";
    ///
    ///     const CHART_LABEL: Option<&'static str> = Some("{marker.data.text}");
    ///     const TABLE_LABEL: Option<&'static str> = Some("{marker.name} - {marker.data.text}");
    ///
    ///     const FIELDS: &'static [StaticSchemaMarkerField] = &[StaticSchemaMarkerField {
    ///         key: "text",
    ///         label: "Contents",
    ///         format: MarkerFieldFormat::String,
    ///         flags: MarkerFieldFlags::SEARCHABLE,
    ///     }];
    ///
    ///     fn name(&self, _profile: &mut Profile) -> StringHandle {
    ///         self.name
    ///     }
    ///
    ///     fn category(&self, _profile: &mut Profile) -> CategoryHandle {
    ///         CategoryHandle::OTHER
    ///     }
    ///
    ///     fn string_field_value(&self, _field_index: u32) -> StringHandle {
    ///         self.text
    ///     }
    ///
    ///     fn number_field_value(&self, _field_index: u32) -> f64 {
    ///         unreachable!()
    ///     }
    /// }
    /// ```
    pub fn add_marker<T: Marker>(
        &mut self,
        thread: ThreadHandle,
        timing: MarkerTiming,
        marker: T,
    ) -> MarkerHandle {
        let marker_type = marker.marker_type(self);
        let name = marker.name(self);
        let category = marker.category(self);
        let thread = &mut self.threads[thread.0];
        let name_thread_string_index = thread.convert_string_index(&self.string_table, name.0);
        let schema = &self.marker_schemas[marker_type.0];
        thread.add_marker(
            name_thread_string_index,
            marker_type,
            schema,
            marker,
            timing,
            category,
            &mut self.string_table,
        )
    }

    /// Sets a marker's stack. Every marker can have an optional stack, regardless
    /// of its marker type.
    ///
    /// A marker's stack is shown in its tooltip, and in the sidebar in the marker table
    /// panel if a marker with a stack is selected.
    ///
    /// To get the stack handle, you can use [`Profile::intern_stack`] or
    /// [`Profile::intern_stack_frames`].
    pub fn set_marker_stack(
        &mut self,
        thread: ThreadHandle,
        marker: MarkerHandle,
        stack: Option<StackHandle>,
    ) {
        let stack_index = match stack {
            Some(StackHandle(stack_thread_handle, stack_index)) => {
                assert_eq!(
                    stack_thread_handle, thread,
                    "StackHandle from different thread passed to Profile::add_sample"
                );
                Some(stack_index)
            }
            None => None,
        };
        self.threads[thread.0].set_marker_stack(marker, stack_index);
    }

    /// Add a data point to a counter. For a memory counter, `value_delta` is the number
    /// of bytes that have been allocated / deallocated since the previous counter sample, and
    /// `number_of_operations` is the number of `malloc` / `free` calls since the previous
    /// counter sample. Both numbers are deltas.
    ///
    /// The graph in the profiler UI will connect subsequent data points with diagonal lines.
    /// Counters are intended for values that are measured at a time-based sample rate; for example,
    /// you could add a counter sample once every millisecond with the current memory usage.
    ///
    /// Alternatively, you can emit a new data point only whenever the value changes.
    /// In that case you probably want to emit two values per change: one right before (with
    /// the old value) and one right at the timestamp of change (with the new value). This way
    /// you'll get more horizontal lines, and the diagonal line will be very short.
    pub fn add_counter_sample(
        &mut self,
        counter: CounterHandle,
        timestamp: Timestamp,
        value_delta: f64,
        number_of_operations_delta: u32,
    ) {
        self.counters[counter.0].add_sample(timestamp, value_delta, number_of_operations_delta)
    }

    fn intern_frame_internal(
        thread: &mut Thread,
        process: &mut Process,
        frame_info: FrameInfo,
        global_libs: &mut GlobalLibTable,
        kernel_libs: &mut LibMappings<LibraryHandle>,
        string_table: &GlobalStringTable,
    ) -> usize {
        let location = match frame_info.frame {
            Frame::InstructionPointer(ip) => process.convert_address(global_libs, kernel_libs, ip),
            Frame::ReturnAddress(ra) => {
                process.convert_address(global_libs, kernel_libs, ra.saturating_sub(1))
            }
            Frame::AdjustedReturnAddress(ara) => {
                process.convert_address(global_libs, kernel_libs, ara)
            }
            Frame::RelativeAddressFromInstructionPointer(lib_handle, relative_address) => {
                let global_lib_index = global_libs.index_for_used_lib(lib_handle);
                InternalFrameLocation::AddressInLib(relative_address, global_lib_index)
            }
            Frame::RelativeAddressFromReturnAddress(lib_handle, relative_address) => {
                let global_lib_index = global_libs.index_for_used_lib(lib_handle);
                let adjusted_relative_address = relative_address.saturating_sub(1);
                InternalFrameLocation::AddressInLib(adjusted_relative_address, global_lib_index)
            }
            Frame::RelativeAddressFromAdjustedReturnAddress(
                lib_handle,
                adjusted_relative_address,
            ) => {
                let global_lib_index = global_libs.index_for_used_lib(lib_handle);
                InternalFrameLocation::AddressInLib(adjusted_relative_address, global_lib_index)
            }
            Frame::Label(string_index) => {
                let thread_string_index = thread.convert_string_index(string_table, string_index.0);
                InternalFrameLocation::Label(thread_string_index)
            }
        };
        let internal_frame = InternalFrame {
            location,
            flags: frame_info.flags,
            category_pair: frame_info.category_pair,
        };
        thread.frame_index_for_frame(internal_frame, global_libs)
    }

    /// Set whether the profile is already symbolicated.
    ///
    /// Read: whether symbols are resolved.
    ///
    /// If your samples refer to labels instead of addresses, it is safe
    /// to set to true.
    ///
    /// Setting to true prevents the Firefox Profiler from attempting to
    /// resolve symbols.
    ///
    /// By default, this is set to false. This causes the Firefox Profiler
    /// to look up symbols for any address-based [`Frame`], i.e. any frame
    /// which is not a [`Frame::Label`].
    ///
    /// If you use address-based frames and supply your own symbols using
    /// [`Profile::add_lib`] or [`Profile::set_lib_symbol_table`], you can
    /// choose to set this to true and avoid another symbol lookup, or you
    /// can leave it set to false if there is a way to obtain richer symbol
    /// information than the information supplied in those symbol tables.
    ///
    /// For example, when samply creates a profile which includes JIT frames,
    /// and there is a Jitdump file with symbol information about those JIT
    /// frames, samply uses [`Profile::set_lib_symbol_table`] to provide
    /// the function names for the JIT functions. But it does not call
    /// [`Profile::set_symbolicated`] with true, because the Jitdump files may
    /// include additional information that's not in the [`SymbolTable`],
    /// specifically the Jitdump file may have file name and line number information.
    /// This information is only added into the profile by the Firefox Profiler's
    /// resolution of symbols: The Firefox Profiler requests symbol information
    /// for the JIT frame addresses from samply's symbol server, at which point
    /// samply obtains the richer information from the Jitdump file and returns
    /// it via the symbol server response.
    pub fn set_symbolicated(&mut self, v: bool) {
        self.symbolicated = v;
    }

    // frames is ordered from caller to callee, i.e. root function first, pc last
    fn stack_index_for_frames(
        &mut self,
        thread: ThreadHandle,
        frames: impl Iterator<Item = FrameInfo>,
    ) -> Option<usize> {
        let thread = &mut self.threads[thread.0];
        let process = &mut self.processes[thread.process().0];
        let mut prefix = None;
        for frame_info in frames {
            let category_pair = frame_info.category_pair;
            let frame_index = Self::intern_frame_internal(
                thread,
                process,
                frame_info,
                &mut self.global_libs,
                &mut self.kernel_libs,
                &self.string_table,
            );
            prefix = Some(thread.stack_index_for_stack(prefix, frame_index, category_pair));
        }
        prefix
    }

    /// Returns a flattened list of `ThreadHandle`s in the right order.
    ///
    // The processed profile format has all threads from all processes in a flattened threads list.
    // Each thread duplicates some information about its process, which allows the Firefox Profiler
    // UI to group threads from the same process.
    fn sorted_threads(&self) -> (Vec<ThreadHandle>, Vec<usize>, Vec<usize>) {
        let mut sorted_threads = Vec::with_capacity(self.threads.len());
        let mut first_thread_index_per_process = vec![0; self.processes.len()];
        let mut new_thread_indices = vec![0; self.threads.len()];

        let mut sorted_processes: Vec<_> = (0..self.processes.len()).map(ProcessHandle).collect();
        sorted_processes.sort_by(|a_handle, b_handle| {
            let a = &self.processes[a_handle.0];
            let b = &self.processes[b_handle.0];
            a.cmp_for_json_order(b)
        });

        for process in sorted_processes {
            let prev_len = sorted_threads.len();
            first_thread_index_per_process[process.0] = prev_len;
            sorted_threads.extend_from_slice(self.processes[process.0].threads());

            let sorted_threads_for_this_process = &mut sorted_threads[prev_len..];
            sorted_threads_for_this_process.sort_by(|a_handle, b_handle| {
                let a = &self.threads[a_handle.0];
                let b = &self.threads[b_handle.0];
                a.cmp_for_json_order(b)
            });

            for (i, v) in sorted_threads_for_this_process.iter().enumerate() {
                new_thread_indices[v.0] = prev_len + i;
            }
        }

        (
            sorted_threads,
            first_thread_index_per_process,
            new_thread_indices,
        )
    }

    fn serializable_threads<'a>(
        &'a self,
        sorted_threads: &'a [ThreadHandle],
    ) -> SerializableProfileThreadsProperty<'a> {
        SerializableProfileThreadsProperty {
            threads: &self.threads,
            processes: &self.processes,
            categories: &self.categories,
            sorted_threads,
            marker_schemas: &self.marker_schemas,
            global_string_table: &self.string_table,
        }
    }

    fn serializable_counters<'a>(
        &'a self,
        first_thread_index_per_process: &'a [usize],
    ) -> SerializableProfileCountersProperty<'a> {
        SerializableProfileCountersProperty {
            counters: &self.counters,
            first_thread_index_per_process,
        }
    }

    fn contains_js_function(&self) -> bool {
        self.threads.iter().any(|t| t.contains_js_function())
    }

    pub fn lib_used_rva_iter(&self) -> UsedLibraryAddressesIterator {
        self.global_libs.lib_used_rva_iter()
    }
}

impl Serialize for Profile {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        let (sorted_threads, first_thread_index_per_process, new_thread_indices) =
            self.sorted_threads();
        let mut map = serializer.serialize_map(None)?;
        map.serialize_entry("meta", &SerializableProfileMeta(self, &new_thread_indices))?;
        map.serialize_entry("libs", &self.global_libs)?;
        map.serialize_entry("threads", &self.serializable_threads(&sorted_threads))?;
        map.serialize_entry("pages", &[] as &[()])?;
        map.serialize_entry("profilerOverhead", &[] as &[()])?;
        map.serialize_entry(
            "counters",
            &self.serializable_counters(&first_thread_index_per_process),
        )?;
        map.end()
    }
}

struct SerializableProfileMeta<'a>(&'a Profile, &'a [usize]);

impl Serialize for SerializableProfileMeta<'_> {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        let mut map = serializer.serialize_map(None)?;
        map.serialize_entry("categories", &self.0.categories)?;
        map.serialize_entry("debug", &false)?;
        map.serialize_entry(
            "extensions",
            &json!({
                "length": 0,
                "baseURL": [],
                "id": [],
                "name": [],
            }),
        )?;
        map.serialize_entry("interval", &(self.0.interval.as_secs_f64() * 1000.0))?;
        map.serialize_entry("preprocessedProfileVersion", &49)?;
        map.serialize_entry("processType", &0)?;
        map.serialize_entry("product", &self.0.product)?;
        if let Some(os_name) = &self.0.os_name {
            map.serialize_entry("oscpu", os_name)?;
        }
        map.serialize_entry(
            "sampleUnits",
            &json!({
                "time": "ms",
                "eventDelay": "ms",
                "threadCPUDelta": "µs",
            }),
        )?;
        map.serialize_entry("startTime", &self.0.reference_timestamp)?;
        map.serialize_entry("symbolicated", &self.0.symbolicated)?;
        map.serialize_entry("pausedRanges", &[] as &[()])?;
        map.serialize_entry("version", &24)?;
        map.serialize_entry("usesOnlyOneStackType", &(!self.0.contains_js_function()))?;
        map.serialize_entry("doesNotUseFrameImplementation", &true)?;
        map.serialize_entry("sourceCodeIsNotOnSearchfox", &true)?;

        let mut marker_schemas: Vec<InternalMarkerSchema> = self.0.marker_schemas.clone();
        marker_schemas.sort_by(|a, b| a.type_name().cmp(b.type_name()));
        map.serialize_entry("markerSchema", &marker_schemas)?;

        if !self.0.initial_visible_threads.is_empty() {
            map.serialize_entry(
                "initialVisibleThreads",
                &self
                    .0
                    .initial_visible_threads
                    .iter()
                    .map(|x| self.1[x.0])
                    .collect::<Vec<_>>(),
            )?;
        }

        if !self.0.initial_selected_threads.is_empty() {
            map.serialize_entry(
                "initialSelectedThreads",
                &self
                    .0
                    .initial_selected_threads
                    .iter()
                    .map(|x| self.1[x.0])
                    .collect::<Vec<_>>(),
            )?;
        };

        map.end()
    }
}

struct SerializableProfileThreadsProperty<'a> {
    threads: &'a [Thread],
    processes: &'a [Process],
    categories: &'a [Category],
    sorted_threads: &'a [ThreadHandle],
    marker_schemas: &'a [InternalMarkerSchema],
    global_string_table: &'a GlobalStringTable,
}

impl Serialize for SerializableProfileThreadsProperty<'_> {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        let mut seq = serializer.serialize_seq(Some(self.threads.len()))?;

        for thread in self.sorted_threads {
            let categories = self.categories;
            let thread = &self.threads[thread.0];
            let process = &self.processes[thread.process().0];
            let marker_schemas = self.marker_schemas;
            let global_string_table = self.global_string_table;
            seq.serialize_element(&SerializableProfileThread(
                process,
                thread,
                categories,
                marker_schemas,
                global_string_table,
            ))?;
        }

        seq.end()
    }
}

struct SerializableProfileCountersProperty<'a> {
    counters: &'a [Counter],
    first_thread_index_per_process: &'a [usize],
}

impl Serialize for SerializableProfileCountersProperty<'_> {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        let mut seq = serializer.serialize_seq(Some(self.counters.len()))?;

        for counter in self.counters {
            let main_thread_index = self.first_thread_index_per_process[counter.process().0];
            seq.serialize_element(&counter.as_serializable(main_thread_index))?;
        }

        seq.end()
    }
}

struct SerializableProfileThread<'a>(
    &'a Process,
    &'a Thread,
    &'a [Category],
    &'a [InternalMarkerSchema],
    &'a GlobalStringTable,
);

impl Serialize for SerializableProfileThread<'_> {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        let SerializableProfileThread(
            process,
            thread,
            categories,
            marker_schemas,
            global_string_table,
        ) = self;
        let process_start_time = process.start_time();
        let process_end_time = process.end_time();
        let process_name = process.name();
        let pid = process.pid();
        thread.serialize_with(
            serializer,
            categories,
            process_start_time,
            process_end_time,
            process_name,
            pid,
            marker_schemas,
            global_string_table,
        )
    }
}