Expand description
§gauss-quad
gauss-quad is a Gaussian quadrature library for numerical integration.
§Quadrature rules
gauss-quad implements the following quadrature rules:
- Gauss-Legendre
- Gauss-Jacobi
- Gauss-Laguerre (generalized)
- Gauss-Hermite
- Gauss-Chebyshev
- Midpoint
- Simpson
§Using gauss-quad
To use any of the quadrature rules in your project, first initialize the rule with a specified degree and then you can use it for integration, e.g.:
use gauss_quad::GaussLegendre;
// This macro is used in these docs to compare floats.
// The assertion succeeds if the two sides are within floating point error,
// or an optional epsilon.
use approx::assert_abs_diff_eq;
// initialize the quadrature rule
let degree = 10;
let quad = GaussLegendre::new(degree)?;
// use the rule to integrate a function
let left_bound = 0.0;
let right_bound = 1.0;
let integral = quad.integrate(left_bound, right_bound, |x| x * x);
assert_abs_diff_eq!(integral, 1.0 / 3.0);
§Setting up a quadrature rule
Using a quadrature rule takes two steps:
- Initialization
- Integration
First, rules must be initialized using some specific input parameters.
Then, you can integrate functions using those rules:
let gauss_legendre = GaussLegendre::new(degree)?;
// Integrate on the domain [a, b]
let x_cubed = gauss_legendre.integrate(a, b, |x| x * x * x);
let gauss_jacobi = GaussJacobi::new(degree, alpha, beta)?;
// Integrate on the domain [c, d]
let double_x = gauss_jacobi.integrate(c, d, |x| 2.0 * x);
let gauss_laguerre = GaussLaguerre::new(degree, alpha)?;
// no explicit domain, Gauss-Laguerre integration is done on the domain [0, ∞).
let piecewise = gauss_laguerre.integrate(|x| if x > 0.0 && x < 2.0 { x } else { 0.0 });
let gauss_hermite = GaussHermite::new(degree)?;
// again, no explicit domain since Gauss-Hermite integration is done over the domain (-∞, ∞).
let golden_polynomial = gauss_hermite.integrate(|x| x * x - x - 1.0);
§Specific quadrature rules
Different rules may take different parameters.
For example, the GaussLaguerre
rule requires both a degree
and an alpha
parameter.
GaussLaguerre
is also defined as an improper integral over the domain [0, ∞).
This means no domain bounds are needed in the integrate
call.
// initialize the quadrature rule
let degree = 2;
let alpha = 0.5;
let quad = GaussLaguerre::new(degree, alpha)?;
// use the rule to integrate a function
let integral = quad.integrate(|x| x * x);
assert_abs_diff_eq!(integral, 15.0 * PI.sqrt() / 8.0, epsilon = 1e-14);
§Errors
Quadrature rules are only defined for a certain set of input values.
For example, every rule is only defined for degrees where degree > 1
.
let degree = 1;
assert!(GaussLaguerre::new(degree, 0.1).is_err());
Specific rules may have other requirements.
GaussJacobi
for example, requires alpha and beta parameters larger than -1.0.
let degree = 10;
let alpha = 0.1;
let beta = -1.1;
assert!(GaussJacobi::new(degree, alpha, beta).is_err())
Make sure to read the specific quadrature rule’s documentation before using it.
§Passing functions to quadrature rules
The integrate
method takes any integrand that implements the Fn(f64) -> f64
trait, i.e. functions of
one f64
parameter.
// initialize the quadrature rule
let degree = 2;
let quad = GaussLegendre::new(degree)?;
// use the rule to integrate a function
let left_bound = 0.0;
let right_bound = 1.0;
let integral = quad.integrate(left_bound, right_bound, |x| x * x);
assert_abs_diff_eq!(integral, 1.0 / 3.0);
§Double integrals
It is possible to use this crate to do double and higher integrals:
let rule = GaussLegendre::new(3)?;
// integrate x^2*y over the triangle in the xy-plane where x ϵ [0, 1] and y ϵ [0, x]:
let double_int = rule.integrate(0.0, 1.0, |x| rule.integrate(0.0, x, |y| x * x * y));
assert_abs_diff_eq!(double_int, 0.1);
However, the time complexity of the integration then scales with the number of nodes to the power of the depth of the integral, e.g. O(n³) for triple integrals.
§Feature flags
serde
: implements the Serialize
and Deserialize
traits from
the serde
crate for the quadrature rule structs.
rayon
: enables a parallel version of the integrate
function on the quadrature rule structs. Can speed up integration if evaluating the integrand is expensive (takes ≫100 µs).
Modules§
- Numerical integration using the Gauss-Chebyshev quadrature rule.
- Numerical integration using the Gauss-Hermite quadrature rule.
- Numerical integration using the Gauss-Jacobi quadrature rule.
- Numerical integration using the generalized Gauss-Laguerre quadrature rule.
- Numerical integration using the Gauss-Legendre quadrature rule.
- Numerical integration using the midpoint rule.
- Numerical integration using a Simpson’s rule.
Structs§
- A Gauss-Chebyshev quadrature scheme of the first kind.
- A Gauss-Chebyshev quadrature scheme of the second kind.
- A Gauss-Hermite quadrature scheme.
- A Gauss-Jacobi quadrature scheme.
- A Gauss-Laguerre quadrature scheme.
- A Gauss-Legendre quadrature scheme.
- A midpoint rule.
- A Simpson’s rule.
Type Aliases§
- A node in a quadrature rule.
- A weight in a quadrature rule.