gauss_quad/chebyshev/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
//! Numerical integration using the [Gauss-Chebyshev quadrature](https://en.wikipedia.org/wiki/Chebyshev%E2%80%93Gauss_quadrature) rule.
//!
//! This rule can integrate formulas on the form f(x) * (1 - x^2)^`a` on finite intervals, where `a` is either -1/2 or 1/2.
use crate::{Node, Weight, __impl_node_weight_rule};
use core::{f64::consts::PI, fmt};
use std::backtrace::Backtrace;
#[cfg(feature = "rayon")]
use rayon::iter::{IntoParallelIterator, IntoParallelRefIterator, ParallelIterator};
/// A Gauss-Chebyshev quadrature scheme of the first kind.
///
/// Used to integrate functions of the form
/// f(x) / sqrt(1 - x^2) on finite intervals.
///
/// # Example
///
/// ```
/// # use gauss_quad::chebyshev::{GaussChebyshevFirstKind, GaussChebyshevError};
/// # use approx::assert_relative_eq;
/// # use core::f64::consts::PI;
/// let rule = GaussChebyshevFirstKind::new(2)?;
///
/// assert_relative_eq!(rule.integrate(0.0, 2.0, |x| x), PI);
/// # Ok::<(), GaussChebyshevError>(())
/// ```
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct GaussChebyshevFirstKind {
node_weight_pairs: Vec<(Node, Weight)>,
}
impl GaussChebyshevFirstKind {
/// Create a new `GaussChebyshevFirstKind` rule that can integrate functions of the form f(x) / sqrt(1 - x^2).
///
/// # Errors
///
/// Returns an error if `degree` is less than 2.
pub fn new(degree: usize) -> Result<Self, GaussChebyshevError> {
if degree < 2 {
return Err(GaussChebyshevError::new());
}
let n = degree as f64;
Ok(Self {
node_weight_pairs: (1..degree + 1)
.map(|i| ((PI * (2.0 * (i as f64) - 1.0) / (2.0 * n)).cos(), PI / n))
.collect(),
})
}
fn argument_transformation(x: f64, a: f64, b: f64) -> f64 {
0.5 * ((b - a) * x + (b + a))
}
fn scale_factor(a: f64, b: f64) -> f64 {
0.5 * (b - a)
}
#[cfg(feature = "rayon")]
/// Same as [`new`](Self::new) but runs in parallel.
pub fn par_new(degree: usize) -> Result<Self, GaussChebyshevError> {
if degree < 2 {
return Err(GaussChebyshevError::new());
}
let n = degree as f64;
Ok(Self {
node_weight_pairs: (1..degree + 1)
.into_par_iter()
.map(|i| ((PI * (2.0 * (i as f64) - 1.0) / (2.0 * n)).cos(), PI / n))
.collect(),
})
}
/// Returns the value of the integral of the given `integrand` in the inverval \[`a`, `b`\].
///
/// # Example
///
/// ```
/// # use gauss_quad::chebyshev::{GaussChebyshevFirstKind, GaussChebyshevError};
/// # use approx::assert_relative_eq;
/// # use core::f64::consts::PI;
/// let rule = GaussChebyshevFirstKind::new(2)?;
///
/// assert_relative_eq!(rule.integrate(-1.0, 1.0, |x| 1.5 * x * x - 0.5), PI / 4.0);
/// # Ok::<(), GaussChebyshevError>(())
/// ```
pub fn integrate<F>(&self, a: f64, b: f64, integrand: F) -> f64
where
F: Fn(f64) -> f64,
{
let result: f64 = self
.node_weight_pairs
.iter()
.map(|(x, w)| integrand(Self::argument_transformation(*x, a, b)) * w)
.sum();
result * Self::scale_factor(a, b)
}
#[cfg(feature = "rayon")]
/// Same as [`integrate`](Self::integrate) but runs in parallel.
pub fn par_integrate<F>(&self, a: f64, b: f64, integrand: F) -> f64
where
F: Sync + Fn(f64) -> f64,
{
let result: f64 = self
.node_weight_pairs
.par_iter()
.map(|(x, w)| integrand(Self::argument_transformation(*x, a, b)) * w)
.sum();
result * Self::scale_factor(a, b)
}
}
__impl_node_weight_rule! {GaussChebyshevFirstKind, GaussChebyshevFirstKindNodes, GaussChebyshevFirstKindWeights, GaussChebyshevFirstKindIter, GaussChebyshevFirstKindIntoIter}
/// A Gauss-Chebyshev quadrature scheme of the second kind.
///
/// Used to integrate functions of the form
/// f(x) * sqrt(1 - x^2) on finite intervals.
///
/// # Example
///
/// ```
/// # use gauss_quad::chebyshev::{GaussChebyshevSecondKind, GaussChebyshevError};
/// # use approx::assert_relative_eq;
/// # use core::f64::consts::PI;
/// let rule = GaussChebyshevSecondKind::new(2)?;
///
/// assert_relative_eq!(rule.integrate(-1.0, 1.0, |x| x * x), PI / 8.0);
/// # Ok::<(), GaussChebyshevError>(())
/// ```
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct GaussChebyshevSecondKind {
node_weight_pairs: Vec<(Node, Weight)>,
}
impl GaussChebyshevSecondKind {
/// Create a new `GaussChebyshev` rule that can integrate functions of the form f(x) * sqrt(1 - x^2).
///
/// # Errors
///
/// Returns an error if `degree` is less than 2.
pub fn new(degree: usize) -> Result<Self, GaussChebyshevError> {
if degree < 2 {
return Err(GaussChebyshevError::new());
}
let n = degree as f64;
Ok(Self {
node_weight_pairs: (1..degree + 1)
.map(|i| {
let over_n_plus_1 = 1.0 / (n + 1.0);
let sin_val = (PI * i as f64 * over_n_plus_1).sin();
(
(PI * i as f64 * over_n_plus_1).cos(),
PI * over_n_plus_1 * sin_val * sin_val,
)
})
.collect(),
})
}
#[cfg(feature = "rayon")]
/// Same as [`new`](Self::new) but runs in parallel.
pub fn par_new(degree: usize) -> Result<Self, GaussChebyshevError> {
if degree < 2 {
return Err(GaussChebyshevError::new());
}
let n = degree as f64;
Ok(Self {
node_weight_pairs: (1..degree + 1)
.into_par_iter()
.map(|i| {
let over_n_plus_1 = 1.0 / (n + 1.0);
let sin_val = (PI * i as f64 * over_n_plus_1).sin();
(
(PI * i as f64 * over_n_plus_1).cos(),
PI * over_n_plus_1 * sin_val * sin_val,
)
})
.collect(),
})
}
fn argument_transformation(x: f64, a: f64, b: f64) -> f64 {
0.5 * ((b - a) * x + (b + a))
}
fn scale_factor(a: f64, b: f64) -> f64 {
0.5 * (b - a)
}
/// Returns the value of the integral of the given `integrand` in the inverval \[`a`, `b`\].
///
/// # Example
///
/// ```
/// # use gauss_quad::chebyshev::{GaussChebyshevSecondKind, GaussChebyshevError};
/// # use approx::assert_relative_eq;
/// # use core::f64::consts::PI;
/// let rule = GaussChebyshevSecondKind::new(2)?;
///
/// assert_relative_eq!(rule.integrate(-1.0, 1.0, |x| 1.5 * x * x - 0.5), -PI / 16.0);
/// # Ok::<(), GaussChebyshevError>(())
/// ```
pub fn integrate<F>(&self, a: f64, b: f64, integrand: F) -> f64
where
F: Fn(f64) -> f64,
{
let result: f64 = self
.node_weight_pairs
.iter()
.map(|(x, w)| integrand(Self::argument_transformation(*x, a, b)) * w)
.sum();
result * Self::scale_factor(a, b)
}
#[cfg(feature = "rayon")]
/// Same as [`integrate`](Self::integrate) but runs in parallel.
pub fn par_integrate<F>(&self, a: f64, b: f64, integrand: F) -> f64
where
F: Fn(f64) -> f64 + Sync,
{
let result: f64 = self
.node_weight_pairs
.par_iter()
.map(|(x, w)| integrand(Self::argument_transformation(*x, a, b)) * w)
.sum();
result * Self::scale_factor(a, b)
}
}
__impl_node_weight_rule! {GaussChebyshevSecondKind, GaussChebyshevSecondKindNodes, GaussChebyshevSecondKindWeights, GaussChebyshevSecondKindIter, GaussChebyshevSecondKindIntoIter}
/// The error returned when attempting to create a [`GaussChebyshevFirstKind`] or [`GaussChebyshevSecondKind`] struct with a degree less than 2.
#[derive(Debug)]
pub struct GaussChebyshevError(Backtrace);
impl GaussChebyshevError {
pub(crate) fn new() -> Self {
Self(Backtrace::capture())
}
/// Returns a [`Backtrace`] to where the error was created.
///
/// This backtrace is captured with [`Backtrace::capture`], see it for more information about how to make it display information when printed.
pub fn backtrace(&self) -> &Backtrace {
&self.0
}
}
impl fmt::Display for GaussChebyshevError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "the degree must be at least 2")
}
}
impl std::error::Error for GaussChebyshevError {}
#[cfg(test)]
mod test {
use approx::assert_abs_diff_eq;
use super::{GaussChebyshevFirstKind, GaussChebyshevSecondKind};
use core::f64::consts::PI;
#[test]
fn check_error() {
assert!(GaussChebyshevFirstKind::new(1).is_err());
assert!(GaussChebyshevSecondKind::new(1).is_err());
}
#[test]
fn check_chebyshev_1st_deg_5() {
// Source: https://mathworld.wolfram.com/Chebyshev-GaussQuadrature.html
let ans = [
(0.5 * (0.5 * (5.0 + f64::sqrt(5.0))).sqrt(), PI / 5.0),
(0.5 * (0.5 * (5.0 - f64::sqrt(5.0))).sqrt(), PI / 5.0),
(0.0, PI / 5.0),
(-0.5 * (0.5 * (5.0 - f64::sqrt(5.0))).sqrt(), PI / 5.0),
(-0.5 * (0.5 * (5.0 + f64::sqrt(5.0))).sqrt(), PI / 5.0),
];
let rule = GaussChebyshevFirstKind::new(5).unwrap();
for ((x, w), (x_should, w_should)) in rule.into_iter().zip(ans.into_iter()) {
assert_abs_diff_eq!(x, x_should);
assert_abs_diff_eq!(w, w_should);
}
}
#[test]
fn check_chebyshev_2nd_deg_5() {
// I couldn't find lists of nodes and weights to compare to. So this function computes
// them itself with formulas from Wikipedia.
let deg = 5;
let rule = GaussChebyshevSecondKind::new(deg).unwrap();
let deg = deg as f64;
for (i, (x, w)) in rule.into_iter().enumerate() {
// Source: https://en.wikipedia.org/wiki/Chebyshev%E2%80%93Gauss_quadrature
let ii = i as f64 + 1.0;
let x_should = (ii * PI / (deg + 1.0)).cos();
let w_should = PI / (deg + 1.0) * (ii * PI / (deg + 1.0)).sin().powi(2);
assert_abs_diff_eq!(x, x_should);
assert_abs_diff_eq!(w, w_should);
}
}
#[test]
fn check_integral_of_line() {
let rule = GaussChebyshevFirstKind::new(2).unwrap();
assert_abs_diff_eq!(rule.integrate(0.0, 2.0, |x| x), PI);
}
#[test]
fn check_integral_of_legendre_2() {
let rule1 = GaussChebyshevFirstKind::new(2).unwrap();
let rule2 = GaussChebyshevSecondKind::new(2).unwrap();
fn legendre_2(x: f64) -> f64 {
1.5 * x * x - 0.5
}
assert_abs_diff_eq!(rule1.integrate(-1.0, 1.0, legendre_2), PI / 4.0);
assert_abs_diff_eq!(rule2.integrate(-1.0, 1.0, legendre_2), -PI / 16.0);
}
#[test]
fn check_integral_of_parabola() {
let rule = GaussChebyshevSecondKind::new(2).unwrap();
assert_abs_diff_eq!(rule.integrate(-1.0, 1.0, |x| x * x), PI / 8.0);
}
#[cfg(feature = "rayon")]
#[test]
fn test_par_integrate() {
let rule1 = GaussChebyshevFirstKind::par_new(2).unwrap();
let rule2 = GaussChebyshevSecondKind::par_new(2).unwrap();
assert_abs_diff_eq!(rule1.par_integrate(0.0, 2.0, |x| x), PI);
assert_abs_diff_eq!(rule2.par_integrate(-1.0, 1.0, |x| x * x), PI / 8.0);
}
#[cfg(feature = "rayon")]
#[test]
fn check_par_error() {
assert!(GaussChebyshevFirstKind::new(0).is_err());
assert!(GaussChebyshevSecondKind::new(0).is_err());
}
}