gauss_quad/hermite/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
//! Numerical integration using the Gauss-Hermite quadrature rule.
//!
//! This rule can integrate integrands of the form  
//! e^(-x^2) * f(x)  
//! over the domain (-∞, ∞).
//!
//! # Example
//!
//! Integrate x^2 * e^(-x^2)
//! ```
//! use gauss_quad::hermite::GaussHermite;
//! # use gauss_quad::hermite::GaussHermiteError;
//! use approx::assert_abs_diff_eq;
//!
//! let quad = GaussHermite::new(10)?;
//!
//! let integral = quad.integrate(|x| x.powi(2));
//!
//! assert_abs_diff_eq!(integral, core::f64::consts::PI.sqrt() / 2.0, epsilon = 1e-14);
//! # Ok::<(), GaussHermiteError>(())
//! ```

#[cfg(feature = "rayon")]
use rayon::prelude::{IntoParallelRefIterator, ParallelIterator};

use crate::{DMatrixf64, Node, Weight, __impl_node_weight_rule};

use core::f64::consts::PI;

use std::backtrace::Backtrace;

/// A Gauss-Hermite quadrature scheme.
///
/// These rules can integrate integrands of the form e^(-x^2) * f(x) over the domain (-∞, ∞).
///
/// # Example
///
/// Integrate e^(-x^2) * cos(x)
/// ```
/// # use gauss_quad::hermite::{GaussHermite, GaussHermiteError};
/// # use approx::assert_abs_diff_eq;
/// # use core::f64::consts::{E, PI};
/// // initialize a Gauss-Hermite rule with 20 nodes
/// let quad = GaussHermite::new(20)?;
///
/// // numerically integrate a function over (-∞, ∞) using the Gauss-Hermite rule
/// let integral = quad.integrate(|x| x.cos());
///
/// assert_abs_diff_eq!(integral, PI.sqrt() / E.powf(0.25), epsilon = 1e-14);
/// # Ok::<(), GaussHermiteError>(())
/// ```
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct GaussHermite {
    node_weight_pairs: Vec<(Node, Weight)>,
}

impl GaussHermite {
    /// Initializes Gauss-Hermite quadrature rule of the given degree by computing the needed nodes and weights.
    ///
    /// A rule of degree n can integrate polynomials of degree 2n-1 exactly.
    ///
    /// Applies the Golub-Welsch algorithm to determine Gauss-Hermite nodes & weights.
    /// Constructs the companion matrix A for the Hermite Polynomial using the relation:
    /// 1/2 H_{n+1} + n H_{n-1} = x H_n
    /// A similar matrix that is symmetrized is constructed by D A D^{-1}
    /// Resulting in a symmetric tridiagonal matrix with
    /// 0 on the diagonal & sqrt(n/2) on the off-diagonal
    /// root & weight finding are equivalent to eigenvalue problem
    /// see Gil, Segura, Temme - Numerical Methods for Special Functions
    ///
    /// # Errors
    ///
    /// Returns an error if `deg` is smaller than 2.
    pub fn new(deg: usize) -> Result<Self, GaussHermiteError> {
        if deg < 2 {
            return Err(GaussHermiteError::new());
        }
        let mut companion_matrix = DMatrixf64::from_element(deg, deg, 0.0);
        // Initialize symmetric companion matrix
        for idx in 0..deg - 1 {
            let idx_f64 = 1.0 + idx as f64;
            let element = (idx_f64 * 0.5).sqrt();
            unsafe {
                *companion_matrix.get_unchecked_mut((idx, idx + 1)) = element;
                *companion_matrix.get_unchecked_mut((idx + 1, idx)) = element;
            }
        }
        // calculate eigenvalues & vectors
        let eigen = companion_matrix.symmetric_eigen();

        // zip together the iterator over nodes with the one over weights and return as Vec<(f64, f64)>
        Ok(GaussHermite {
            node_weight_pairs: eigen
                .eigenvalues
                .iter()
                .copied()
                .zip(
                    eigen
                        .eigenvectors
                        .row(0)
                        .map(|x| x * x * PI.sqrt())
                        .iter()
                        .copied(),
                )
                .collect(),
        })
    }

    /// Perform quadrature of e^(-x^2) * `integrand`(x) over the domain (-∞, ∞).
    pub fn integrate<F>(&self, integrand: F) -> f64
    where
        F: Fn(f64) -> f64,
    {
        let result: f64 = self
            .node_weight_pairs
            .iter()
            .map(|(x_val, w_val)| integrand(*x_val) * w_val)
            .sum();
        result
    }

    #[cfg(feature = "rayon")]
    /// Same as [`integrate`](GaussHermite::integrate) but runs in parallel.
    pub fn par_integrate<F>(&self, integrand: F) -> f64
    where
        F: Fn(f64) -> f64 + Sync,
    {
        let result: f64 = self
            .node_weight_pairs
            .par_iter()
            .map(|(x_val, w_val)| integrand(*x_val) * w_val)
            .sum();
        result
    }
}

__impl_node_weight_rule! {GaussHermite, GaussHermiteNodes, GaussHermiteWeights, GaussHermiteIter, GaussHermiteIntoIter}

/// The error returned by [`GaussHermite::new`] if it is given a degree of 0 or 1.
#[derive(Debug)]
pub struct GaussHermiteError(Backtrace);

use core::fmt;
impl fmt::Display for GaussHermiteError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "the degree of the Gauss-Hermite quadrature rule must be at least 2"
        )
    }
}

impl std::error::Error for GaussHermiteError {}

impl GaussHermiteError {
    /// Calls [`Backtrace::capture`] and wraps the result in a `GaussHermiteError` struct.
    fn new() -> Self {
        Self(Backtrace::capture())
    }

    /// Returns a [`Backtrace`] to where the error was created.
    ///
    /// This backtrace is captured with [`Backtrace::capture`], see it for more information about how to make it display information when printed.
    #[inline]
    pub fn backtrace(&self) -> &Backtrace {
        &self.0
    }
}

#[cfg(test)]
mod tests {
    use approx::assert_abs_diff_eq;

    use super::*;

    #[test]
    fn golub_welsch_3() {
        let (x, w): (Vec<_>, Vec<_>) = GaussHermite::new(3).unwrap().into_iter().unzip();
        let x_should = [1.224_744_871_391_589, 0.0, -1.224_744_871_391_589];
        let w_should = [
            0.295_408_975_150_919_35,
            1.181_635_900_603_677_4,
            0.295_408_975_150_919_35,
        ];
        for (i, x_val) in x_should.iter().enumerate() {
            assert_abs_diff_eq!(*x_val, x[i], epsilon = 1e-15);
        }
        for (i, w_val) in w_should.iter().enumerate() {
            assert_abs_diff_eq!(*w_val, w[i], epsilon = 1e-15);
        }
    }

    #[test]
    fn check_hermite_error() {
        let hermite_rule = GaussHermite::new(0);
        assert!(hermite_rule.is_err());
        assert_eq!(
            format!("{}", hermite_rule.err().unwrap()),
            "the degree of the Gauss-Hermite quadrature rule must be at least 2"
        );

        assert!(GaussHermite::new(1).is_err());
    }

    #[test]
    fn check_derives() {
        let quad = GaussHermite::new(10).unwrap();
        let quad_clone = quad.clone();
        assert_eq!(quad, quad_clone);
        let other_quad = GaussHermite::new(3).unwrap();
        assert_ne!(quad, other_quad);
    }

    #[test]
    fn check_iterators() {
        let rule = GaussHermite::new(3).unwrap();
        let ans = core::f64::consts::PI.sqrt() / 2.0;

        assert_abs_diff_eq!(
            ans,
            rule.iter().fold(0.0, |tot, (n, w)| tot + n * n * w),
            epsilon = 1e-14
        );

        assert_abs_diff_eq!(
            ans,
            rule.nodes()
                .zip(rule.weights())
                .fold(0.0, |tot, (n, w)| tot + n * n * w),
            epsilon = 1e-14
        );

        assert_abs_diff_eq!(
            ans,
            rule.into_iter().fold(0.0, |tot, (n, w)| tot + n * n * w),
            epsilon = 1e-14
        );
    }

    #[test]
    fn integrate_one() {
        let quad = GaussHermite::new(5).unwrap();
        let integral = quad.integrate(|_x| 1.0);
        assert_abs_diff_eq!(integral, PI.sqrt(), epsilon = 1e-15);
    }

    #[cfg(feature = "rayon")]
    #[test]
    fn par_integrate_one() {
        let quad = GaussHermite::new(5).unwrap();
        let integral = quad.par_integrate(|_x| 1.0);
        assert_abs_diff_eq!(integral, PI.sqrt(), epsilon = 1e-15);
    }
}