gauss_quad/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
//! # gauss-quad
//!
//! **gauss-quad** is a [Gaussian quadrature](https://en.wikipedia.org/wiki/Gaussian_quadrature) library for numerical integration.
//!
//! ## Quadrature rules
//!
//! **gauss-quad** implements the following quadrature rules:
//! * [Gauss-Legendre](https://en.wikipedia.org/wiki/Gauss%E2%80%93Legendre_quadrature)
//! * [Gauss-Jacobi](https://en.wikipedia.org/wiki/Gauss%E2%80%93Jacobi_quadrature)
//! * [Gauss-Laguerre](https://en.wikipedia.org/wiki/Gauss%E2%80%93Laguerre_quadrature) (generalized)
//! * [Gauss-Hermite](https://en.wikipedia.org/wiki/Gauss%E2%80%93Hermite_quadrature)
//! * [Gauss-Chebyshev](https://en.wikipedia.org/wiki/Chebyshev%E2%80%93Gauss_quadrature)
//! * [Midpoint](https://en.wikipedia.org/wiki/Riemann_sum#Midpoint_rule)
//! * [Simpson](https://en.wikipedia.org/wiki/Simpson%27s_rule)
//!
//! ## Using **gauss-quad**
//!
//! To use any of the quadrature rules in your project, first initialize the rule with
//! a specified degree and then you can use it for integration, e.g.:
//! ```
//! use gauss_quad::GaussLegendre;
//! # use gauss_quad::legendre::GaussLegendreError;
//! // This macro is used in these docs to compare floats.
//! // The assertion succeeds if the two sides are within floating point error,
//! // or an optional epsilon.
//! use approx::assert_abs_diff_eq;
//!
//! // initialize the quadrature rule
//! let degree = 10;
//! let quad = GaussLegendre::new(degree)?;
//!
//! // use the rule to integrate a function
//! let left_bound = 0.0;
//! let right_bound = 1.0;
//! let integral = quad.integrate(left_bound, right_bound, |x| x * x);
//! assert_abs_diff_eq!(integral, 1.0 / 3.0);
//! # Ok::<(), GaussLegendreError>(())
//! ```
//!
//! ## Setting up a quadrature rule
//!
//! Using a quadrature rule takes two steps:
//! 1. Initialization
//! 2. Integration
//!
//! First, rules must be initialized using some specific input parameters.
//!
//! Then, you can integrate functions using those rules:
//! ```
//! # use gauss_quad::*;
//! # let degree = 5;
//! # let alpha = 1.2;
//! # let beta = 1.2;
//! # let a = 0.0;
//! # let b = 1.0;
//! # let c = -10.;
//! # let d = 100.;
//! let gauss_legendre = GaussLegendre::new(degree)?;
//! // Integrate on the domain [a, b]
//! let x_cubed = gauss_legendre.integrate(a, b, |x| x * x * x);
//!
//! let gauss_jacobi = GaussJacobi::new(degree, alpha, beta)?;
//! // Integrate on the domain [c, d]
//! let double_x = gauss_jacobi.integrate(c, d, |x| 2.0 * x);
//!
//! let gauss_laguerre = GaussLaguerre::new(degree, alpha)?;
//! // no explicit domain, Gauss-Laguerre integration is done on the domain [0, ∞).
//! let piecewise = gauss_laguerre.integrate(|x| if x > 0.0 && x < 2.0 { x } else { 0.0 });
//!
//! let gauss_hermite = GaussHermite::new(degree)?;
//! // again, no explicit domain since Gauss-Hermite integration is done over the domain (-∞, ∞).
//! let golden_polynomial = gauss_hermite.integrate(|x| x * x - x - 1.0);
//! # Ok::<(), Box<dyn std::error::Error>>(())
//! ```
//!
//! ## Specific quadrature rules
//!
//! Different rules may take different parameters.
//!
//! For example, the `GaussLaguerre` rule requires both a `degree` and an `alpha`
//! parameter.
//!
//! `GaussLaguerre` is also defined as an improper integral over the domain [0, ∞).
//! This means no domain bounds are needed in the `integrate` call.
//! ```
//! # use gauss_quad::laguerre::{GaussLaguerre, GaussLaguerreError};
//! # use approx::assert_abs_diff_eq;
//! # use core::f64::consts::PI;
//! // initialize the quadrature rule
//! let degree = 2;
//! let alpha = 0.5;
//! let quad = GaussLaguerre::new(degree, alpha)?;
//!
//! // use the rule to integrate a function
//! let integral = quad.integrate(|x| x * x);
//!
//! assert_abs_diff_eq!(integral, 15.0 * PI.sqrt() / 8.0, epsilon = 1e-14);
//! # Ok::<(), GaussLaguerreError>(())
//! ```
//!
//! ## Errors
//!
//! Quadrature rules are only defined for a certain set of input values.
//! For example, every rule is only defined for degrees where `degree > 1`.
//! ```
//! # use gauss_quad::GaussLaguerre;
//! let degree = 1;
//! assert!(GaussLaguerre::new(degree, 0.1).is_err());
//! ```
//!
//! Specific rules may have other requirements.
//! `GaussJacobi` for example, requires alpha and beta parameters larger than -1.0.
//! ```
//! # use gauss_quad::jacobi::GaussJacobi;
//! let degree = 10;
//! let alpha = 0.1;
//! let beta = -1.1;
//!
//! assert!(GaussJacobi::new(degree, alpha, beta).is_err())
//! ```
//! Make sure to read the specific quadrature rule's documentation before using it.
//!
//! ## Passing functions to quadrature rules
//!
//! The `integrate` method takes any integrand that implements the [`Fn(f64) -> f64`](Fn) trait, i.e. functions of
//! one `f64` parameter.
//!
//! ```
//! # use gauss_quad::legendre::{GaussLegendre, GaussLegendreError};
//! # use approx::assert_abs_diff_eq;
//!
//! // initialize the quadrature rule
//! let degree = 2;
//! let quad = GaussLegendre::new(degree)?;
//!
//! // use the rule to integrate a function
//! let left_bound = 0.0;
//! let right_bound = 1.0;
//!
//! let integral = quad.integrate(left_bound, right_bound, |x| x * x);
//!
//! assert_abs_diff_eq!(integral, 1.0 / 3.0);
//! # Ok::<(), GaussLegendreError>(())
//! ```
//!
//! ## Double integrals
//!
//! It is possible to use this crate to do double and higher integrals:
//! ```
//! # use gauss_quad::legendre::{GaussLegendre, GaussLegendreError};
//! # use approx::assert_abs_diff_eq;
//! let rule = GaussLegendre::new(3)?;
//!
//! // integrate x^2*y over the triangle in the xy-plane where x ϵ [0, 1] and y ϵ [0, x]:
//! let double_int = rule.integrate(0.0, 1.0, |x| rule.integrate(0.0, x, |y| x * x * y));
//!
//! assert_abs_diff_eq!(double_int, 0.1);
//! # Ok::<(), GaussLegendreError>(())
//! ```
//! However, the time complexity of the integration then scales with the number of nodes to
//! the power of the depth of the integral, e.g. O(n³) for triple integrals.
//!
//! ## Feature flags
//!
//! `serde`: implements the [`Serialize`](serde::Serialize) and [`Deserialize`](serde::Deserialize) traits from
//! the [`serde`](https://crates.io/crates/serde) crate for the quadrature rule structs.
//!
//! `rayon`: enables a parallel version of the `integrate` function on the quadrature rule structs. Can speed up integration if evaluating the integrand is expensive (takes ≫100 µs).

// Only enable the nighlty `doc_auto_cfg` feature when
// the `docsrs` configuration attribute is defined.
// The config in Cargo.toml means that this is defined when we are on docs.rs (which uses the nightly compiler)
// or if the environment variable RUSTDOCFLAGS is set as `RUSTDOCFLAGS="--cfg docsrs"`.
// This lets us get a tag on docs.rs that says "Available on crate feature ... only".
#![cfg_attr(docsrs, feature(doc_auto_cfg))]

use nalgebra::{Dyn, Matrix, VecStorage};

type DMatrixf64 = Matrix<f64, Dyn, Dyn, VecStorage<f64, Dyn, Dyn>>;

pub mod chebyshev;
mod data_api;
mod gamma;
pub mod hermite;
pub mod jacobi;
pub mod laguerre;
pub mod legendre;
pub mod midpoint;
pub mod simpson;

#[doc(inline)]
pub use chebyshev::{GaussChebyshevFirstKind, GaussChebyshevSecondKind};
#[doc(inline)]
pub use data_api::{Node, Weight};
#[doc(inline)]
pub use hermite::GaussHermite;
#[doc(inline)]
pub use jacobi::GaussJacobi;
#[doc(inline)]
pub use laguerre::GaussLaguerre;
#[doc(inline)]
pub use legendre::GaussLegendre;
#[doc(inline)]
pub use midpoint::Midpoint;
#[doc(inline)]
pub use simpson::Simpson;