gauss_quad/midpoint/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
//! Numerical integration using the midpoint rule.
//!
//! This is one of the simplest integration schemes.
//!
//! 1. Divide the domain into equally sized sections.
//! 2. Find the function value at the midpoint of each section.
//! 3. The section's integral is approximated as a rectangle as wide as the section and as tall as the function
//!    value at the midpoint.
//!
//! ```
//! use gauss_quad::midpoint::{Midpoint, MidpointError};
//! use approx::assert_abs_diff_eq;
//!
//! use core::f64::consts::PI;
//!
//! let eps = 0.001;
//!
//! let n = 30;
//! let quad = Midpoint::new(n)?;
//!
//! // integrate some functions
//! let two_thirds = quad.integrate(-1.0, 1.0, |x| x * x);
//! assert_abs_diff_eq!(two_thirds, 0.66666, epsilon = eps);
//!
//! let estimate_sin = quad.integrate(-PI, PI, |x| x.sin());
//! assert_abs_diff_eq!(estimate_sin, 0.0, epsilon = eps);
//!
//! // some functions need more steps than others
//! let m = 100;
//! let better_quad = Midpoint::new(m)?;
//!
//! let piecewise = better_quad.integrate(-5.0, 5.0, |x|
//!     if x > 1.0 && x < 2.0 {
//!         (-x * x).exp()
//!     } else {
//!         0.0
//!     }
//! );
//!
//! assert_abs_diff_eq!(0.135257, piecewise, epsilon = eps);
//! # Ok::<(), MidpointError>(())
//! ```

#[cfg(feature = "rayon")]
use rayon::prelude::{IntoParallelRefIterator, ParallelIterator};

use crate::{Node, __impl_node_rule};

use std::backtrace::Backtrace;

/// A midpoint rule.
/// ```
/// # use gauss_quad::midpoint::{Midpoint, MidpointError};
/// // initialize a midpoint rule with 100 cells
/// let quad: Midpoint = Midpoint::new(100)?;
///
/// // numerically integrate a function from -1.0 to 1.0 using the midpoint rule
/// let approx = quad.integrate(-1.0, 1.0, |x| x * x);
/// # Ok::<(), MidpointError>(())
/// ```
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Midpoint {
    /// The dimensionless midpoints
    nodes: Vec<Node>,
}

impl Midpoint {
    /// Initialize a new midpoint rule with `degree` number of cells. The nodes are evenly spaced.
    // -- code based on Luca Palmieri's "Scientific computing: a Rust adventure [Part 2 - Array1]"
    //    <https://www.lpalmieri.com/posts/2019-04-07-scientific-computing-a-rust-adventure-part-2-array1/>
    ///
    /// # Errors
    ///
    /// Returns an error if `degree` is less than 1.
    pub fn new(degree: usize) -> Result<Self, MidpointError> {
        if degree > 0 {
            Ok(Self {
                nodes: (0..degree).map(|d| d as f64).collect(),
            })
        } else {
            Err(MidpointError::new())
        }
    }

    /// Integrate over the domain [a, b].
    pub fn integrate<F>(&self, a: f64, b: f64, integrand: F) -> f64
    where
        F: Fn(f64) -> f64,
    {
        let rect_width = (b - a) / self.nodes.len() as f64;

        let sum: f64 = self
            .nodes
            .iter()
            .map(|&node| integrand(a + rect_width * (0.5 + node)))
            .sum();

        sum * rect_width
    }

    #[cfg(feature = "rayon")]
    /// Same as [`integrate`](Midpoint::integrate) but runs in parallel.
    pub fn par_integrate<F>(&self, a: f64, b: f64, integrand: F) -> f64
    where
        F: Fn(f64) -> f64 + Sync,
    {
        let rect_width = (b - a) / self.nodes.len() as f64;

        let sum: f64 = self
            .nodes
            .par_iter()
            .map(|&node| integrand(a + rect_width * (0.5 + node)))
            .sum();

        sum * rect_width
    }
}

__impl_node_rule! {Midpoint, MidpointIter, MidpointIntoIter}

/// The error returned by [`Midpoint::new`] if given a degree of 0.
#[derive(Debug)]
pub struct MidpointError(Backtrace);

use core::fmt;
impl fmt::Display for MidpointError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "the degree of the midpoint rule needs to be at least 1")
    }
}

impl MidpointError {
    /// Calls [`Backtrace::capture`] and wraps the result in a `MidpointError` struct.
    fn new() -> Self {
        Self(Backtrace::capture())
    }

    /// Returns a [`Backtrace`] to where the error was created.
    ///
    /// This backtrace is captured with [`Backtrace::capture`], see it for more information about how to make it display information when printed.
    #[inline]
    pub fn backtrace(&self) -> &Backtrace {
        &self.0
    }
}

impl std::error::Error for MidpointError {}

#[cfg(test)]
mod tests {
    use approx::assert_abs_diff_eq;

    use super::*;

    #[test]
    fn check_midpoint_integration() {
        let quad = Midpoint::new(100).unwrap();
        let integral = quad.integrate(0.0, 1.0, |x| x * x);
        assert_abs_diff_eq!(integral, 1.0 / 3.0, epsilon = 0.0001);
    }

    #[cfg(feature = "rayon")]
    #[test]
    fn par_check_midpoint_integration() {
        let quad = Midpoint::new(100).unwrap();
        let integral = quad.par_integrate(0.0, 1.0, |x| x * x);
        assert_abs_diff_eq!(integral, 1.0 / 3.0, epsilon = 0.0001);
    }

    #[test]
    fn check_midpoint_error() {
        let midpoint_rule = Midpoint::new(0);
        assert!(midpoint_rule.is_err());
        assert_eq!(
            format!("{}", midpoint_rule.err().unwrap()),
            "the degree of the midpoint rule needs to be at least 1"
        );
    }

    #[test]
    fn check_derives() {
        let quad = Midpoint::new(10).unwrap();
        let quad_clone = quad.clone();
        assert_eq!(quad, quad_clone);
        let other_quad = Midpoint::new(3).unwrap();
        assert_ne!(quad, other_quad);
    }

    #[test]
    fn check_iterators() {
        let rule = Midpoint::new(100).unwrap();
        let a = 0.0;
        let b = 1.0;
        let ans = 1.0 / 3.0;
        let rect_width = (b - a) / rule.degree() as f64;

        assert_abs_diff_eq!(
            ans,
            rule.iter().fold(0.0, |tot, n| {
                let x = a + rect_width * (0.5 + n);
                tot + x * x
            }) * rect_width,
            epsilon = 1e-4
        );

        assert_abs_diff_eq!(
            ans,
            rule.into_iter().fold(0.0, |tot, n| {
                let x = a + rect_width * (0.5 + n);
                tot + x * x
            }) * rect_width,
            epsilon = 1e-4
        );
    }
}