gauss_quad/simpson/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
//! Numerical integration using a Simpson's rule.
//!
//! A popular quadrature rule (also known as Kepler's barrel rule). It can be derived
//! in the simplest case by replacing the integrand with a parabola that has the same
//! function values at the end points a & b, as well as the Simpson m=(a+b)/2, which
//! results in the integral formula
//! S(f) = (b-a)/6 * [ f(a) + 4f(m) + f(b) ]
//!
//! Dividing the interval \[a, b\] into N neighboring intervals of length h = (b-a)/N and
//! applying the Simpson rule to each subinterval, the integral is given by
//!
//! S(f) = h/6 * [ f(a) + f(b) + 2*Sum_{k=1..N-1} f(x_k) + 4*Sum_{k=1..N} f( (x_{k-1} + x_k)/2 )]
//!
//! with x_k = a + k*h.
//!
//! ```
//! use gauss_quad::simpson::Simpson;
//! # use gauss_quad::simpson::SimpsonError;
//! use approx::assert_abs_diff_eq;
//!
//! use core::f64::consts::PI;
//!
//! let eps = 0.001;
//!
//! let n = 10;
//! let quad = Simpson::new(n)?;
//!
//! // integrate some functions
//! let integrate_euler = quad.integrate(0.0, 1.0, |x| x.exp());
//! assert_abs_diff_eq!(integrate_euler, 1.0_f64.exp() - 1.0, epsilon = eps);
//!
//! let integrate_sin = quad.integrate(-PI, PI, |x| x.sin());
//! assert_abs_diff_eq!(integrate_sin, 0.0, epsilon = eps);
//! # Ok::<(), SimpsonError>(())
//! ```
#[cfg(feature = "rayon")]
use rayon::prelude::{IndexedParallelIterator, IntoParallelRefIterator, ParallelIterator};
use crate::{Node, __impl_node_rule};
use std::backtrace::Backtrace;
/// A Simpson's rule.
///
/// ```
/// # use gauss_quad::simpson::{Simpson, SimpsonError};
/// // initialize a Simpson rule with 100 subintervals
/// let quad: Simpson = Simpson::new(100)?;
///
/// // numerically integrate a function from -1.0 to 1.0 using the Simpson rule
/// let approx = quad.integrate(-1.0, 1.0, |x| x * x);
/// # Ok::<(), SimpsonError>(())
/// ```
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Simpson {
/// The dimensionless Simpsons nodes.
nodes: Vec<Node>,
}
impl Simpson {
/// Initialize a new Simpson rule with `degree` being the number of intervals.
///
/// # Errors
///
/// Returns an error if given a degree of zero.
pub fn new(degree: usize) -> Result<Self, SimpsonError> {
if degree >= 1 {
Ok(Self {
nodes: (0..degree).map(|d| d as f64).collect(),
})
} else {
Err(SimpsonError::new())
}
}
/// Integrate over the domain [a, b].
pub fn integrate<F>(&self, a: f64, b: f64, integrand: F) -> f64
where
F: Fn(f64) -> f64,
{
let n = self.nodes.len() as f64;
let h = (b - a) / n;
// first sum over the interval edges. Skips first index to sum 1..n-1
let sum_over_interval_edges: f64 = self
.nodes
.iter()
.skip(1)
.map(|&node| integrand(a + node * h))
.sum();
// sum over the midpoints f( (x_{k-1} + x_k)/2 ), as node N is not included,
// add it in the final result
let sum_over_midpoints: f64 = self
.nodes
.iter()
.skip(1)
.map(|&node| integrand(a + (2.0 * node - 1.0) * h / 2.0))
.sum();
h / 6.0
* (2.0 * sum_over_interval_edges
+ 4.0 * sum_over_midpoints
+ 4.0 * integrand(a + (2.0 * n - 1.0) * h / 2.0)
+ integrand(a)
+ integrand(b))
}
#[cfg(feature = "rayon")]
/// Same as [`integrate`](Simpson::integrate) but runs in parallel.
pub fn par_integrate<F>(&self, a: f64, b: f64, integrand: F) -> f64
where
F: Fn(f64) -> f64 + Sync,
{
let n = self.nodes.len() as f64;
let h = (b - a) / n;
let (sum_over_interval_edges, sum_over_midpoints): (f64, f64) = rayon::join(
|| {
self.nodes
.par_iter()
.skip(1)
.map(|&node| integrand(a + node * h))
.sum::<f64>()
},
|| {
self.nodes
.par_iter()
.skip(1)
.map(|&node| integrand(a + (2.0 * node - 1.0) * h / 2.0))
.sum::<f64>()
},
);
h / 6.0
* (2.0 * sum_over_interval_edges
+ 4.0 * sum_over_midpoints
+ 4.0 * integrand(a + (2.0 * n - 1.0) * h / 2.0)
+ integrand(a)
+ integrand(b))
}
}
__impl_node_rule! {Simpson, SimpsonIter, SimpsonIntoIter}
/// The error returned by [`Simpson::new`] if given a degree of 0.
#[derive(Debug)]
pub struct SimpsonError(Backtrace);
use core::fmt;
impl fmt::Display for SimpsonError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "the degree of the Simpson rule must be at least 1.")
}
}
impl SimpsonError {
/// Calls [`Backtrace::capture`] and wraps the result in a `SimpsonError` struct.
fn new() -> Self {
Self(Backtrace::capture())
}
/// Returns a [`Backtrace`] to where the error was created.
///
/// This backtrace is captured with [`Backtrace::capture`], see it for more information about how to make it display information when printed.
#[inline]
pub fn backtrace(&self) -> &Backtrace {
&self.0
}
}
impl std::error::Error for SimpsonError {}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn check_simpson_integration() {
let quad = Simpson::new(2).unwrap();
let integral = quad.integrate(0.0, 1.0, |x| x * x);
approx::assert_abs_diff_eq!(integral, 1.0 / 3.0, epsilon = 0.0001);
}
#[cfg(feature = "rayon")]
#[test]
fn par_check_simpson_integration() {
let quad = Simpson::new(2).unwrap();
let integral = quad.par_integrate(0.0, 1.0, |x| x * x);
approx::assert_abs_diff_eq!(integral, 1.0 / 3.0, epsilon = 0.0001);
}
#[test]
fn check_simpson_error() {
let simpson_rule = Simpson::new(0);
assert!(simpson_rule.is_err());
assert_eq!(
format!("{}", simpson_rule.err().unwrap()),
"the degree of the Simpson rule must be at least 1."
);
}
#[test]
fn check_derives() {
let quad = Simpson::new(10).unwrap();
let quad_clone = quad.clone();
assert_eq!(quad, quad_clone);
let other_quad = Simpson::new(3).unwrap();
assert_ne!(quad, other_quad);
}
}