Module model

Source
Expand description

All the object definitions used by the BigQuery REST API.

Modules§

aggregate_classification_metrics
Aggregate metrics for classification/classifier models. For multi-class models, the metrics are either macro-averaged or micro-averaged. When macro-averaged, the metrics are calculated for each label and then an unweighted average is taken of those values. When micro-averaged, the metric is calculated globally by counting the total number of correctly predicted rows.
argument
Input/output argument of a function or a stored procedure.
arima_coefficients
Arima coefficients.
arima_fitting_metrics
ARIMA model fitting metrics.
arima_forecasting_metrics
Model evaluation metrics for ARIMA forecasting models.
arima_model_info
Arima model information.
arima_order
Arima order, can be used for both non-seasonal and seasonal parts.
arima_result
(Auto-)arima fitting result. Wrap everything in ArimaResult for easier refactoring if we want to use model-specific iteration results.
arima_single_model_forecasting_metrics
Model evaluation metrics for a single ARIMA forecasting model.
audit_config
audit_log_config
bigquery_model_training
bigtable_column
bigtable_column_family
bigtable_options
binary_classification_metrics
Evaluation metrics for binary classification/classifier models.
binary_confusion_matrix
Confusion matrix for binary classification models.
binding
bqml_iteration_result
bqml_training_run
bqml_training_run_training_options
categorical_value
Representative value of a categorical feature.
category_count
Represents the count of a single category within the cluster.
cluster
Message containing the information about one cluster.
cluster_info
Information about a single cluster for clustering model.
clustering
clustering_metrics
Evaluation metrics for clustering models.
confusion_matrix
Confusion matrix for multi-class classification models.
connection_property
csv_options
data_format_options
data_split_result
Data split result. This contains references to the training and evaluation data tables that were used to train the model.
dataset
dataset_reference
datasets
destination_table_properties
dimensionality_reduction_metrics
Model evaluation metrics for dimensionality reduction models.
encryption_configuration
entry
A single entry in the confusion matrix.
error_proto
evaluation_metrics
Evaluation metrics of a model. These are either computed on all training data or just the eval data based on whether eval data was used during training. These are not present for imported models.
explain_query_stage
explain_query_step
explanation
Explanation for a single feature.
expr
external_data_configuration
feature_value
Representative value of a single feature within the cluster.
field_type
get_iam_policy_request
get_policy_options
get_query_results_parameters
get_query_results_response
get_service_account_response
global_explanation
Global explanations containing the top most important features after training.
google_sheets_options
hive_partitioning_options
information_schema
iteration_result
Information about a single iteration of the training run.
job
job_cancel_response
job_configuration
job_configuration_extract
job_configuration_load
job_configuration_query
job_configuration_table_copy
job_list
job_list_jobs
job_list_parameters
job_reference
job_statistics
job_statistics2
job_statistics3
job_statistics4
job_statistics_reservation_usage
job_status
list_models_response
list_routines_response
materialized_view_definition
model
model_definition
model_definition_model_options
model_reference
multi_class_classification_metrics
Evaluation metrics for multi-class classification/classifier models.
policy
principal_component_info
Principal component infos, used only for eigen decomposition based models, e.g., PCA. Ordered by explained_variance in the descending order.
project_list
project_reference
query_parameter
query_parameter_type
query_parameter_type_struct_types
query_parameter_value
query_request
query_response
query_timeline_sample
range_partitioning
range_partitioning_range
ranking_metrics
Evaluation metrics used by weighted-ALS models specified by feedback_type=implicit.
regression_metrics
Evaluation metrics for regression and explicit feedback type matrix factorization models.
routine
A user-defined function or a stored procedure.
routine_reference
row
A single row in the confusion matrix.
row_access_policy
Represents access on a subset of rows on the specified table, defined by its filter predicate. Access to the subset of rows is controlled by its IAM policy.
row_access_policy_reference
row_level_security_statistics
script_stack_frame
script_statistics
set_iam_policy_request
snapshot_definition
standard_sql_data_type
The type of a variable, e.g., a function argument. Examples: INT64: {type_kind=“INT64”} ARRAY: {type_kind=“ARRAY”, array_element_type=“STRING”} STRUCT>: {type_kind=“STRUCT”, struct_type={fields=[ {name=“x”, type={type_kind=“STRING”}}, {name=“y”, type={type_kind=“ARRAY”, array_element_type=“DATE”}} ]}}
standard_sql_field
A field or a column.
standard_sql_struct_type
streamingbuffer
table
table_cell
table_data_insert_all_request
table_data_insert_all_request_rows
table_data_insert_all_response
table_data_insert_all_response_insert_errors
table_data_list_response
table_field_schema
table_field_schema_categories
table_field_schema_policy
table_list
table_list_tables
table_list_view
table_reference
table_row
table_schema
test_iam_permissions_request
test_iam_permissions_response
time_partitioning
training_options
Options used in model training.
training_run
Information about a single training query run for the model.
transaction_info
user_defined_function_resource
view_definition