Expand description
All the object definitions used by the BigQuery REST API.
Modules§
- aggregate_
classification_ metrics - Aggregate metrics for classification/classifier models. For multi-class models, the metrics are either macro-averaged or micro-averaged. When macro-averaged, the metrics are calculated for each label and then an unweighted average is taken of those values. When micro-averaged, the metric is calculated globally by counting the total number of correctly predicted rows.
- argument
- Input/output argument of a function or a stored procedure.
- arima_
coefficients - Arima coefficients.
- arima_
fitting_ metrics - ARIMA model fitting metrics.
- arima_
forecasting_ metrics - Model evaluation metrics for ARIMA forecasting models.
- arima_
model_ info - Arima model information.
- arima_
order - Arima order, can be used for both non-seasonal and seasonal parts.
- arima_
result - (Auto-)arima fitting result. Wrap everything in ArimaResult for easier refactoring if we want to use model-specific iteration results.
- arima_
single_ model_ forecasting_ metrics - Model evaluation metrics for a single ARIMA forecasting model.
- audit_
config - audit_
log_ config - bigquery_
model_ training - bigtable_
column - bigtable_
column_ family - bigtable_
options - binary_
classification_ metrics - Evaluation metrics for binary classification/classifier models.
- binary_
confusion_ matrix - Confusion matrix for binary classification models.
- binding
- bqml_
iteration_ result - bqml_
training_ run - bqml_
training_ run_ training_ options - categorical_
value - Representative value of a categorical feature.
- category_
count - Represents the count of a single category within the cluster.
- cluster
- Message containing the information about one cluster.
- cluster_
info - Information about a single cluster for clustering model.
- clustering
- clustering_
metrics - Evaluation metrics for clustering models.
- confusion_
matrix - Confusion matrix for multi-class classification models.
- connection_
property - csv_
options - data_
format_ options - data_
split_ result - Data split result. This contains references to the training and evaluation data tables that were used to train the model.
- dataset
- dataset_
reference - datasets
- destination_
table_ properties - dimensionality_
reduction_ metrics - Model evaluation metrics for dimensionality reduction models.
- encryption_
configuration - entry
- A single entry in the confusion matrix.
- error_
proto - evaluation_
metrics - Evaluation metrics of a model. These are either computed on all training data or just the eval data based on whether eval data was used during training. These are not present for imported models.
- explain_
query_ stage - explain_
query_ step - explanation
- Explanation for a single feature.
- expr
- external_
data_ configuration - feature_
value - Representative value of a single feature within the cluster.
- field_
type - get_
iam_ policy_ request - get_
policy_ options - get_
query_ results_ parameters - get_
query_ results_ response - get_
service_ account_ response - global_
explanation - Global explanations containing the top most important features after training.
- google_
sheets_ options - hive_
partitioning_ options - information_
schema - iteration_
result - Information about a single iteration of the training run.
- job
- job_
cancel_ response - job_
configuration - job_
configuration_ extract - job_
configuration_ load - job_
configuration_ query - job_
configuration_ table_ copy - job_
list - job_
list_ jobs - job_
list_ parameters - job_
reference - job_
statistics - job_
statistics2 - job_
statistics3 - job_
statistics4 - job_
statistics_ reservation_ usage - job_
status - list_
models_ response - list_
routines_ response - materialized_
view_ definition - model
- model_
definition - model_
definition_ model_ options - model_
reference - multi_
class_ classification_ metrics - Evaluation metrics for multi-class classification/classifier models.
- policy
- principal_
component_ info - Principal component infos, used only for eigen decomposition based models, e.g., PCA. Ordered by explained_variance in the descending order.
- project_
list - project_
reference - query_
parameter - query_
parameter_ type - query_
parameter_ type_ struct_ types - query_
parameter_ value - query_
request - query_
response - query_
timeline_ sample - range_
partitioning - range_
partitioning_ range - ranking_
metrics - Evaluation metrics used by weighted-ALS models specified by feedback_type=implicit.
- regression_
metrics - Evaluation metrics for regression and explicit feedback type matrix factorization models.
- routine
- A user-defined function or a stored procedure.
- routine_
reference - row
- A single row in the confusion matrix.
- row_
access_ policy - Represents access on a subset of rows on the specified table, defined by its filter predicate. Access to the subset of rows is controlled by its IAM policy.
- row_
access_ policy_ reference - row_
level_ security_ statistics - script_
stack_ frame - script_
statistics - set_
iam_ policy_ request - snapshot_
definition - standard_
sql_ data_ type - The type of a variable, e.g., a function argument. Examples: INT64: {type_kind=“INT64”} ARRAY: {type_kind=“ARRAY”, array_element_type=“STRING”} STRUCT>: {type_kind=“STRUCT”, struct_type={fields=[ {name=“x”, type={type_kind=“STRING”}}, {name=“y”, type={type_kind=“ARRAY”, array_element_type=“DATE”}} ]}}
- standard_
sql_ field - A field or a column.
- standard_
sql_ struct_ type - streamingbuffer
- table
- table_
cell - table_
data_ insert_ all_ request - table_
data_ insert_ all_ request_ rows - table_
data_ insert_ all_ response - table_
data_ insert_ all_ response_ insert_ errors - table_
data_ list_ response - table_
field_ schema - table_
field_ schema_ categories - table_
field_ schema_ policy - table_
list - table_
list_ tables - table_
list_ view - table_
reference - table_
row - table_
schema - test_
iam_ permissions_ request - test_
iam_ permissions_ response - time_
partitioning - training_
options - Options used in model training.
- training_
run - Information about a single training query run for the model.
- transaction_
info - user_
defined_ function_ resource - view_
definition