gcp_bigquery_client/model/dataset.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
use crate::error::BQError;
use crate::model::dataset_reference::DatasetReference;
use crate::model::table::Table;
use crate::Client;
use std::collections::HashMap;
#[derive(Debug, Default, Clone, Serialize, Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct Dataset {
/// [Required] A reference that identifies the dataset.
pub dataset_reference: DatasetReference,
/// A descriptive name for the dataset, if one exists.
#[serde(skip_serializing_if = "Option::is_none")]
pub friendly_name: Option<String>,
/// The fully-qualified, unique, opaque ID of the dataset.
#[serde(skip_serializing_if = "Option::is_none")]
pub id: Option<String>,
/// The resource type. This property always returns the value \"bigquery#dataset\".
#[serde(skip_serializing_if = "Option::is_none")]
pub kind: Option<String>,
/// The labels associated with this dataset. You can use these to organize and group your datasets.
#[serde(skip_serializing_if = "Option::is_none")]
pub labels: Option<std::collections::HashMap<String, String>>,
/// The geographic location where the data resides.
#[serde(skip_serializing_if = "Option::is_none")]
pub location: Option<String>,
}
impl Dataset {
pub fn new(project_id: &str, dataset_id: &str) -> Self {
Self {
dataset_reference: DatasetReference {
dataset_id: dataset_id.into(),
project_id: project_id.into(),
},
friendly_name: None,
id: None,
kind: None,
labels: None,
location: None,
}
}
/// Returns the project id of this dataset.
pub fn project_id(&self) -> &String {
&self.dataset_reference.project_id
}
/// Returns the dataset id of this dataset.
pub fn dataset_id(&self) -> &String {
&self.dataset_reference.dataset_id
}
/// Sets the location of this dataset.
/// # Arguments
/// * `location` - The location of this dataset
pub fn location(mut self, location: &str) -> Self {
self.location = Some(location.into());
self
}
/// Sets the friendly name of this dataset.
/// # Arguments
/// * `friendly_name` - The friendly name of this dataset
pub fn friendly_name(mut self, friendly_name: &str) -> Self {
self.friendly_name = Some(friendly_name.into());
self
}
/// Adds a label to this dataset.
/// # Arguments
/// * `key` - The label name.
/// * `value` - The label value.
pub fn label(mut self, key: &str, value: &str) -> Self {
if let Some(labels) = self.labels.as_mut() {
labels.insert(key.into(), value.into());
} else {
let mut labels = HashMap::default();
labels.insert(key.into(), value.into());
self.labels = Some(labels);
}
self
}
/// Creates a new table.
/// # Arguments
/// * `client` - The client API.
/// * `table` - The table definition.
pub async fn create_table(&self, client: &Client, table: Table) -> Result<Table, BQError> {
client.table().create(table).await
}
/// Deletes an existing table.
/// # Arguments
/// * `client` - The client API.
/// * `delete_contents` - A flag defining if a dataset must be deleted even if it contains some tables, views, ...
pub async fn delete(self, client: &Client, delete_contents: bool) -> Result<(), BQError> {
client
.dataset()
.delete(self.project_id(), self.dataset_id(), delete_contents)
.await
}
}